Skip to content

Geometry Multipole

Implements geometry generation class and methods for the Multipole magnets.

Geometry

Source code in fiqus/geom_generators/GeometryMultipole.py
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
class Geometry:
    def __init__(self, data: dF.FDM() = None, geom: FiQuSGeometry() = None,
                 geom_folder: str = None, verbose: bool = False):
        """
        Class to generate geometry
        :param data: FiQuS data model
        :param geom: ROXIE geometry data
        :param verbose: If True more information is printed in python console.
        """
        self.data: dF.FDM() = data
        self.geom: FiQuSGeometry() = geom.Roxie_Data

        # move cooling holes to a desired position
        if self.data.magnet.solve.thermal.collar_cooling.move_cooling_holes:
            self.geom.iron.key_points = self.move_keypoints(self.geom.iron.key_points, self.data.magnet.solve.thermal.collar_cooling.move_cooling_holes)

        self.geom_folder = geom_folder
        self.verbose: bool = verbose

        self.md = dM.MultipoleData()

        self.gu = GmshUtils(self.geom_folder, self.verbose)
        self.gu.initialize(verbosity_Gmsh=self.data.run.verbosity_Gmsh)
        self.occ = gmsh.model.occ

        self.model_file = os.path.join(self.geom_folder, self.data.general.magnet_name)

        self.blk_ins_lines = {}  # for meshed insulation
        self.ins_wire_lines = {}  # for meshed insulation
        self.block_coil_mid_pole_blks = {}

        self.nc = {'collar': 'c', 'iron_yoke': 'i', 'poles': 'p'}
        self.inv_nc = {v: k for k, v in self.nc.items()} #invert naming convention

        if self.data.magnet.geometry.electromagnetics.symmetry != 'none':
            self.symmetric_loop_lines = {'x': [], 'y': []}
            self.symmetric_bnds = {'x_p': {'pnts': [], 'line_pnts': []}, 'y_p': {'pnts': [], 'line_pnts': []},
                                   'x_n': {'pnts': [], 'line_pnts': []}, 'y_n': {'pnts': [], 'line_pnts': []}}

    def clear(self):
        self.md = dM.MultipoleData()
        self.block_coil_mid_pole_blks = {}
        gmsh.clear()

    def ending_step(self, gui: bool = False):
        if gui:
            self.gu.launch_interactive_GUI()
        else:
            if gmsh.isInitialized():
                gmsh.clear()
                gmsh.finalize()

    def saveHalfTurnCornerPositions(self):
        self.occ.synchronize()
        iH, iL, oH, oL, iHr, iLr, oHr, oLr = [], [], [], [], [], [], [], []
        for po in self.geom.coil.physical_order:
            block = self.geom.coil.coils[po.coil].poles[po.pole].layers[po.layer].windings[
                po.winding].blocks[po.block]
            for halfTurn_nr, halfTurn in block.half_turns.items():
                ht = halfTurn.corners.insulated
                ht_b = halfTurn.corners.bare
                iHr.append([ht_b.iH.x, ht_b.iH.y])
                iLr.append([ht_b.iL.x, ht_b.iL.y])
                oHr.append([ht_b.oH.x, ht_b.oH.y])
                oLr.append([ht_b.oL.x, ht_b.oL.y])
                iH.append([ht.iH.x, ht.iH.y])
                iL.append([ht.iL.x, ht.iL.y])
                oH.append([ht.oH.x, ht.oH.y])
                oL.append([ht.oL.x, ht.oL.y])
        with open(f"{self.model_file}.crns", 'w') as f:
            json.dump({'iH': iH, 'iL': iL, 'oH': oH, 'oL': oL,
                       'iHr': iHr, 'iLr': iLr, 'oHr': oHr, 'oLr': oLr}, f)

    def saveStrandPositions(self, run_type):
        symmetry = self.data.magnet.geometry.electromagnetics.symmetry if run_type == 'EM' else 'none'
        ht_nr = 0
        std_nr = 0
        parser_x, parser_y, blocks, ht, std, pole_blocks = [], [], [], [], [], []
        for po in self.geom.coil.physical_order:
            block = self.geom.coil.coils[po.coil].poles[po.pole].layers[po.layer].windings[
                po.winding].blocks[po.block]
            if po.pole == 1: pole_blocks.append(po.block)
            for halfTurn_nr, halfTurn in block.half_turns.items():
                ht_nr += 1
                for strand_group_nr, strand_group in halfTurn.strand_groups.items():
                    for strand_nr, strand in strand_group.strand_positions.items():
                        std_nr += 1
                        blocks.append(po.block)
                        ht.append(ht_nr)
                        std.append(std_nr)
                        parser_x.append(strand.x)
                        parser_y.append(strand.y)
        mirrored = {}
        condition = {2: [1, -1], 3: [1, 1], 4: [-1, 1]}
        if symmetry == 'xy': mirroring = {2: [-1, 1], 3: [-1, -1], 4: [1, -1]}
        elif symmetry == 'x': mirroring = {3: [1, -1], 4: [1, -1]}
        elif symmetry == 'y': mirroring = {2: [-1, 1], 3: [-1, 1]}
        else: mirroring = {}
        if mirroring:
            df = pd.DataFrame({'parser_x': parser_x, 'parser_y': parser_y}, index=std)
            for qdr, mrr in mirroring.items():
                subdf = df[(condition[qdr][0] * df['parser_x'] < 0) & (condition[qdr][1] * df['parser_y'] < 0)]
                for strand, x, y in zip(subdf.index, subdf['parser_x'], subdf['parser_y']):
                    mirrored[strand] = df[(df['parser_x'] == mrr[0] * x) & (df['parser_y'] == mrr[1] * y)].index.item()
        with open(f"{self.model_file}_{run_type}.strs", 'w') as f:
            json.dump({'x': parser_x, 'y': parser_y, 'block': blocks, 'ht': ht, 'mirrored': mirrored,
                       'pole_1_blocks': pole_blocks, 'poles': len(self.geom.coil.coils[1].poles)},
                      f)

    def saveBoundaryRepresentationFile(self, run_type):
        self.occ.synchronize()
        gmsh.write(f'{self.model_file}_{run_type}.brep')
        gmsh.clear()

    def loadBoundaryRepresentationFile(self, run_type):
        gmsh.option.setString('Geometry.OCCTargetUnit', 'M')  # set units to meters
        gmsh.open(os.path.join(f'{self.model_file}_{run_type}.brep'))

    def saveAuxiliaryFile(self, run_type):
        Util.write_data_to_yaml(f'{self.model_file}_{run_type}.aux', self.md.model_dump())

    @staticmethod
    def findMidLayerPoint(bc_current, bc_next, center, mean_rad):
        mid_layer = [(bc_current.x + bc_next.x) / 2, (bc_current.y + bc_next.y) / 2]
        mid_rad = Func.points_distance(mid_layer, [center.x, center.y])
        dist_from_mid = mean_rad - mid_rad
        angle = Func.arc_angle_between_point_and_abscissa(mid_layer, [center.x, center.y])
        mid_layer[0] += dist_from_mid * np.cos(angle)
        mid_layer[1] += dist_from_mid * np.sin(angle)
        return mid_layer

    @staticmethod
    def getMidLayerEndpoints(el_current, el_next, center, mid_layer_arc_pnt=None, coil_type='cos-theta', cable_type='Rutherford', is_for_mid_pole=False):
        thin_shell_endpoints = {'higher': list, 'lower': list}
        which_block = {'higher': str, 'lower': str}
        angles = {'higher': float, 'lower': float}
        # Check if the element crosses the x axis
        angles_to_correct = []
        correction_angle = 0
        l_curr = Func.arc_angle_between_point_and_abscissa([el_current.iL.x, el_current.iL.y], center)
        h_curr = Func.arc_angle_between_point_and_abscissa([el_current.iH.x, el_current.iH.y], center)
        l_next = Func.arc_angle_between_point_and_abscissa([el_next.iL.x, el_next.iL.y], center)
        h_next = Func.arc_angle_between_point_and_abscissa([el_next.iH.x, el_next.iH.y], center)
        if abs(l_curr - h_curr) > np.pi:
            angles_to_correct.append('current')
            correction_angle = max(1.05 * (2 * np.pi - l_curr), correction_angle)
        if abs(l_next - h_next) > np.pi:
            angles_to_correct.append('next')
            correction_angle = max(1.05 * (2 * np.pi - l_next), correction_angle)
        for side in thin_shell_endpoints.keys():
            if mid_layer_arc_pnt:
                if side == 'higher':
                    mid_lyr_curr, mid_lyr_next = [el_current.oH, el_current.iH], [el_next.oH, el_next.iH]
                else:
                    mid_lyr_curr, mid_lyr_next = [el_current.oL, el_current.iL], [el_next.oL, el_next.iL]
                if cable_type in ['Mono', 'Ribbon']:
                    pnts_curr = Func.intersection_between_circle_and_line(
                        Func.line_through_two_points([mid_lyr_curr[0].x, mid_lyr_curr[0].y], [mid_lyr_curr[1].x, mid_lyr_curr[1].y]),
                        [center, mid_layer_arc_pnt])
                    pnt_curr = pnts_curr[0] if Func.points_distance(pnts_curr[0], [mid_lyr_curr[0].x, mid_lyr_curr[0].y]) <\
                                               Func.points_distance(pnts_curr[1], [mid_lyr_curr[0].x, mid_lyr_curr[0].y]) else pnts_curr[1]
                    pnts_next = Func.intersection_between_circle_and_line(
                        Func.line_through_two_points([mid_lyr_next[0].x, mid_lyr_next[0].y], [mid_lyr_next[1].x, mid_lyr_next[1].y]),
                        [center, mid_layer_arc_pnt])
                    pnt_next = pnts_next[0] if Func.points_distance(pnts_next[0], [mid_lyr_next[0].x, mid_lyr_next[0].y]) <\
                                               Func.points_distance(pnts_next[1], [mid_lyr_next[0].x, mid_lyr_next[0].y]) else pnts_next[1]
                elif cable_type == 'Rutherford':
                    pnt_curr = Func.intersection_between_circle_and_line(
                        Func.line_through_two_points([mid_lyr_curr[0].x, mid_lyr_curr[0].y], [mid_lyr_curr[1].x, mid_lyr_curr[1].y]),
                        [center, mid_layer_arc_pnt], get_only_closest=True)[0]
                    pnt_next = Func.intersection_between_circle_and_line(
                        Func.line_through_two_points([mid_lyr_next[0].x, mid_lyr_next[0].y], [mid_lyr_next[1].x, mid_lyr_next[1].y]),
                        [center, mid_layer_arc_pnt], get_only_closest=True)[0]
            else:
                if cable_type == 'Rutherford':
                    if coil_type == 'common-block-coil':
                        mid_layer_x = (el_current.oH.x + el_next.iH.x) / 2
                        if side == 'higher':
                            pnt_curr, pnt_next = [mid_layer_x, el_current.iH.y], [mid_layer_x, el_next.iH.y]
                        else:
                            pnt_curr, pnt_next = [mid_layer_x, el_current.iL.y], [mid_layer_x, el_next.iL.y]
                    else:
                        mid_layer_y = (el_current.iH.y + el_next.iH.y) / 2 if is_for_mid_pole else (el_current.oH.y + el_next.iH.y) / 2
                        if side == 'higher':
                            pnt_curr, pnt_next = [el_current.iH.x, mid_layer_y], [el_next.iL.x if is_for_mid_pole else el_next.iH.x, mid_layer_y]
                        else:
                            pnt_curr, pnt_next = [el_current.iL.x, mid_layer_y], [el_next.iH.x if is_for_mid_pole else el_next.iL.x, mid_layer_y]
                elif cable_type in ['Mono', 'Ribbon']:
                    pnt_curr = [(el_current.oH.x + el_next.iH.x) / 2, (el_current.oH.y + el_next.iH.y) / 2] if side == 'higher'\
                        else [(el_current.oL.x + el_next.iL.x) / 2, (el_current.oL.y + el_next.iL.y) / 2]
                    pnt_next = pnt_curr
            angle_curr = Func.arc_angle_between_point_and_abscissa(pnt_curr, center)
            angle_next = Func.arc_angle_between_point_and_abscissa(pnt_next, center)
            if 'current' in angles_to_correct:
                angle_curr = angle_curr + correction_angle - (2 * np.pi if side == 'lower' else 0)
            elif 'next' in angles_to_correct:
                if angle_curr < np.pi / 2: angle_curr += correction_angle
                elif angle_curr > np.pi * 3 / 2: angle_curr = angle_curr + correction_angle - 2 * np.pi
            if 'next' in angles_to_correct:
                angle_next = angle_next + correction_angle - (2 * np.pi if side == 'lower' else 0)
            elif 'current' in angles_to_correct:
                if angle_next < np.pi / 2: angle_next += correction_angle
                elif angle_next > np.pi * 3 / 2: angle_next = angle_next + correction_angle - 2 * np.pi
            if abs(angle_curr - angle_next) < 1e-6:
                thin_shell_endpoints[side], angles[side], which_block[side] = pnt_curr, angle_curr, 'current'
            elif angle_curr * (-1 if side == 'lower' else 1) < angle_next * (-1 if side == 'lower' else 1):
                thin_shell_endpoints[side], angles[side], which_block[side] = pnt_curr, angle_curr, 'current'
            else:
                thin_shell_endpoints[side], angles[side], which_block[side] = pnt_next, angle_next, 'next'
        if angles['higher'] < angles['lower']: return None
        else: return thin_shell_endpoints, which_block

    def create_geom_dict(self, geometry_setting):
        return {v: k in geometry_setting.areas for k, v in self.nc.items()}

    def constructIronGeometry(self, symmetry, geometry_setting, run_type):
        """
            Generates points, hyper lines, and curve loops for the iron yoke
        """
        iron = self.geom.iron #roxie

        if symmetry == 'xy':
            self.md.geometries.iron.quadrants = {1: dM.Region()}
            list_bnds = ['x_p', 'y_p']
        elif symmetry == 'x':
            self.md.geometries.iron.quadrants = {1: dM.Region(), 2: dM.Region()}
            list_bnds = ['x_p', 'x_n']
        elif symmetry == 'y':
            self.md.geometries.iron.quadrants = {1: dM.Region(), 4: dM.Region()}
            list_bnds = ['y_p', 'y_n']
        else:
            for k in self.nc.keys(): getattr(self.md.geometries, k).quadrants = {1: dM.Region(), 2: dM.Region(), 4: dM.Region(), 3: dM.Region()}
            list_bnds = []

        lc = 1e-2
        geom_dict = self.create_geom_dict(geometry_setting)

        for point_name, point in iron.key_points.items():
            identifier = next((k for k in self.inv_nc.keys() if re.match(f'^{k}', point_name[2:])), None)
            if not geom_dict.get(identifier, False): continue
            quadrants = getattr(self.md.geometries, self.inv_nc[identifier]).quadrants #re.sub(r'\d+', '', point_name[2:])
            if symmetry in ['x', 'xy']:
                if point.y == 0.:
                    self.symmetric_bnds['x_p']['pnts'].append([point_name, point.x])
            if symmetry in ['y', 'xy']:
                if point.x == 0.:
                    self.symmetric_bnds['y_p']['pnts'].append([point_name, point.y])
            quadrants[1].points[point_name] = self.occ.addPoint(point.x, point.y, 0, lc)
            if symmetry in ['x', 'none']:
                if point.x == 0.:
                    quadrants[2].points[point_name] = quadrants[1].points[point_name]
                else:
                    quadrants[2].points[point_name] = self.occ.copy([(0, quadrants[1].points[point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[2].points[point_name])], 1, 0, 0, 0)
                    if point.y == 0. and symmetry == 'x':
                        self.symmetric_bnds['x_n']['pnts'].append([point_name, point.x])
            if symmetry in ['y', 'none']:
                if point.y == 0.:
                    quadrants[4].points[point_name] = quadrants[1].points[point_name]
                else:
                    quadrants[4].points[point_name] = self.occ.copy([(0, quadrants[1].points[point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[4].points[point_name])], 0, 1, 0, 0)
                    if point.x == 0. and symmetry == 'y':
                        self.symmetric_bnds['y_n']['pnts'].append([point_name, point.y])
            if symmetry == 'none':
                if point.y == 0.:
                    quadrants[3].points[point_name] = quadrants[2].points[point_name]
                elif point.x == 0.:
                    quadrants[3].points[point_name] = quadrants[4].points[point_name]
                else:
                    quadrants[3].points[point_name] = self.occ.copy([(0, quadrants[2].points[point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[3].points[point_name])], 0, 1, 0, 0)

        mirror_x = [1, -1, -1, 1]
        mirror_y = [1, 1, -1, -1]
        symmetric_bnds_order = {'x': [], 'y': []}
        sym_lines_tags = {'x_p': [], 'y_p': [], 'x_n': [], 'y_n': []}
        for line_name, line in iron.hyper_lines.items():
            identifier = next((k for k in self.inv_nc.keys() if re.match(f'^{k}', line_name[2:])), None)
            if not geom_dict.get(identifier, False): continue
            quadrants = getattr(self.md.geometries, self.inv_nc[identifier]).quadrants #re.sub(r'\d+', '', line_name[2:])
            pt1 = iron.key_points[line.kp1]
            pt2 = iron.key_points[line.kp2]
            if line.type == 'line':
                for quadrant, qq in quadrants.items():
                    if quadrant == 1:
                        qq.lines[line_name] = self.occ.addLine(qq.points[line.kp1], qq.points[line.kp2])
                        if pt1.y == 0. and pt2.y == 0. and 'x_p' in list_bnds:
                            self.symmetric_bnds['x_p']['line_pnts'].append(line.kp1 + '_' + line.kp2)
                            sym_lines_tags['x_p'].append(qq.lines[line_name])
                            symmetric_bnds_order['x'].append(min(pt1.x, pt2.x))
                        elif pt1.x == 0. and pt2.x == 0. and 'y_p' in list_bnds:
                            self.symmetric_bnds['y_p']['line_pnts'].append(line.kp1 + '_' + line.kp2)
                            sym_lines_tags['y_p'].append(qq.lines[line_name])
                            symmetric_bnds_order['y'].append(min(pt1.y, pt2.y))
                    elif quadrant == 2:
                        if pt1.x == 0. and pt2.x == 0.:
                            qq.lines[line_name] = quadrants[1].lines[line_name]
                        else:
                            qq.lines[line_name] = self.occ.addLine(qq.points[line.kp1], qq.points[line.kp2])
                            if pt1.y == 0. and pt2.y == 0. and 'x_n' in list_bnds:
                                self.symmetric_bnds['x_n']['line_pnts'].append(line.kp1 + '_' + line.kp2)
                                sym_lines_tags['x_n'].append(qq.lines[line_name])
                    elif quadrant == 4:
                        if pt1.y == 0. and pt2.y == 0.:
                            qq.lines[line_name] = quadrants[1].lines[line_name]
                        else:
                            qq.lines[line_name] = self.occ.addLine(qq.points[line.kp1], qq.points[line.kp2])
                            if pt1.x == 0. and pt2.x == 0. and 'y_n' in list_bnds:
                                self.symmetric_bnds['y_n']['line_pnts'].append(line.kp1 + '_' + line.kp2)
                                sym_lines_tags['y_n'].append(qq.lines[line_name])
                    else:  # 3
                        if pt1.y == 0. and pt2.y == 0.:
                            qq.lines[line_name] = quadrants[2].lines[line_name]
                        elif pt1.x == 0. and pt2.x == 0.:
                            qq.lines[line_name] = quadrants[4].lines[line_name]
                        else:
                            qq.lines[line_name] = self.occ.addLine(qq.points[line.kp1], qq.points[line.kp2])

            elif line.type == 'arc':
                center = Func.arc_center_from_3_points([pt1.x, pt1.y],
                                                       [iron.key_points[line.kp3].x, iron.key_points[line.kp3].y],
                                                       [pt2.x, pt2.y])
                new_point_name = 'kp' + line_name + '_center'
                arc_coordinates1 = (pt1.x, pt1.y)
                arc_coordinates2 = (pt2.x, pt2.y)
                arc_coordinates3 = (iron.key_points[line.kp3].x, iron.key_points[line.kp3].y)

                # This code addresses a meshing error in MQXA and MB_2COILS that occurs when an arc is defined on any of
                # the axes. The issue arises because the function Func.arc_center_from_3_points does not return exactly
                # zero but a value with a magnitude of approximately 10^-17 when the two points are placed on the axes.
                # Consequently, when using the method self.occ.addCircleArc(), which only takes in three points without
                # specifying a direction, a problem arises. The addCircleArc() function always creates the arc with the
                # smallest angle. However, since center point can be slightly above or below the axis, the arc can
                # inadvertently be drawn in the wrong quadrant, leading to an incorrect result.
                # -----------------------
                # Check that arcs with points on the x-axis are drawn in the first quadrant
                if arc_coordinates3[1] > 0 and arc_coordinates2[1] == 0 and arc_coordinates1[1] == 0 and center[1] > 0:
                    quadrants[1].points[new_point_name] = self.occ.addPoint(center[0], -center[1], 0)
                # Check that arcs with points on the y-axis are drawn in the first quadrant
                elif arc_coordinates3[0] > 0 and arc_coordinates2[0] == 0 and arc_coordinates1[0] == 0 and center[0] > 0:
                    quadrants[1].points[new_point_name] = self.occ.addPoint(-center[0], center[1], 0)
                else:
                    quadrants[1].points[new_point_name] = self.occ.addPoint(center[0], center[1], 0)
                # -----------------------
                # gmsh.model.setEntityName(0, gm.iron.quadrants[1].points[new_point_name], 'iron_' + new_point_name)
                if symmetry in ['x', 'none']:
                    if center[0] == 0.:
                        quadrants[2].points[new_point_name] = quadrants[1].points[new_point_name]
                    else:
                        quadrants[2].points[new_point_name] = self.occ.copy([(0, quadrants[1].points[new_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[2].points[new_point_name])], 1, 0, 0, 0)
                if symmetry in ['y', 'none']:
                    if center[1] == 0.:
                        quadrants[4].points[new_point_name] = quadrants[1].points[new_point_name]
                    else:
                        quadrants[4].points[new_point_name] = self.occ.copy([(0, quadrants[1].points[new_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[4].points[new_point_name])], 0, 1, 0, 0)
                if symmetry == 'none':
                    if center[1] == 0.:
                        quadrants[3].points[new_point_name] = quadrants[2].points[new_point_name]
                    else:
                        quadrants[3].points[new_point_name] = self.occ.copy([(0, quadrants[2].points[new_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[3].points[new_point_name])], 0, 1, 0, 0)

                for quadrant, qq in quadrants.items():
                    qq.lines[line_name] = self.occ.addCircleArc(
                        qq.points[line.kp1], qq.points[line.kp3], qq.points[line.kp2], center=False)

            elif line.type == 'circle':
                center = [(pt1.x + pt2.x) / 2, (pt1.y + pt2.y) / 2]
                radius = (np.sqrt(np.square(pt1.x - center[0]) + np.square(pt1.y - center[1])) +
                          np.sqrt(np.square(pt2.x - center[0]) + np.square(pt2.y - center[1]))) / 2

                for quadrant, qq in quadrants.items():
                    qq.lines[line_name] = self.occ.addCircle(
                        mirror_x[quadrant - 1] * center[0], mirror_y[quadrant - 1] * center[1], 0, radius)
                    qq.points['kp' + line_name] = len(qq.points) + 1

            elif line.type == 'ellipticArc':
                a, b = line.arg1, line.arg2
                x1, y1 = pt1.x, pt1.y
                x2, y2 = pt2.x, pt2.y
                x3 = np.power(x1, 2.0)
                y3 = np.power(y1, 2.0)
                x4 = np.power(x2, 2.0)
                y4 = np.power(y2, 2.0)
                a2 = np.power(a, 2.0)
                b2 = np.power(b, 2.0)
                expression = -4.0 * a2 * b2 + a2 * y3 - 2.0 * a2 * y1 * y2 + a2 * y4 + b2 * x3 - 2.0 * b2 * x1 * x2 + b2 * x4
                xc = x1 / 2.0 + x2 / 2.0 - a * np.power(- expression / (a2 * y3 - 2.0 * a2 * y1 * y2 + a2 * y4 + b2 * x3 -
                                                                        2.0 * b2 * x1 * x2 + b2 * x4), 0.5) * (y1 - y2) / (2.0 * b)
                yc = y1 / 2.0 + y2 / 2.0 + b * np.power(- expression / (a2 * y3 - 2.0 * a2 * y1 * y2 + a2 * y4 + b2 * x3
                                                                        - 2.0 * b2 * x1 * x2 + b2 * x4), 0.5) * (x1 - x2) / (2.0 * a)

                center = self.occ.addPoint(xc, yc, 0, lc)
                axis_point_a = self.occ.addPoint(xc + a, yc, 0, lc)
                axis_point_b = self.occ.addPoint(xc, yc + b, 0, lc)

                new_point_name = 'kp' + line_name + '_center'
                new_axis_a_point_name = 'kp' + line_name + '_a'
                new_axis_b_point_name = 'kp' + line_name + '_b'

                quadrants[1].points[new_point_name] = center
                quadrants[1].points[new_axis_a_point_name] = axis_point_a
                quadrants[1].points[new_axis_b_point_name] = axis_point_b

                if symmetry in ['x', 'none']:
                    if xc == 0.:  # Least amount of possible points.
                        quadrants[2].points[new_point_name] = quadrants[1].points[new_point_name]
                        quadrants[2].points[new_axis_a_point_name] = quadrants[1].points[new_axis_a_point_name]
                        quadrants[2].points[new_axis_b_point_name] = quadrants[1].points[new_axis_b_point_name]
                    else:
                        quadrants[2].points[new_point_name] = self.occ.copy([(0, quadrants[1].points[new_point_name])])[0][1]
                        quadrants[2].points[new_axis_a_point_name] = self.occ.copy([(0, quadrants[1].points[new_axis_a_point_name])])[0][1]
                        quadrants[2].points[new_axis_b_point_name] = self.occ.copy([(0, quadrants[1].points[new_axis_b_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[2].points[new_point_name])], 1, 0, 0, 0)
                        self.occ.mirror([(0, quadrants[2].points[new_axis_a_point_name])], 1, 0, 0, 0)
                        self.occ.mirror([(0, quadrants[2].points[new_axis_b_point_name])], 1, 0, 0, 0)
                if symmetry in ['y', 'none']:
                    if yc == 0.:
                        quadrants[4].points[new_point_name] = quadrants[1].points[new_point_name]
                        quadrants[4].points[new_axis_a_point_name] = quadrants[1].points[new_axis_a_point_name]
                        quadrants[4].points[new_axis_b_point_name] = quadrants[1].points[new_axis_b_point_name]
                    else:
                        quadrants[4].points[new_point_name] = self.occ.copy([(0, quadrants[1].points[new_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[4].points[new_point_name])], 0, 1, 0, 0)
                        quadrants[4].points[new_axis_a_point_name] = self.occ.copy([(0, quadrants[1].points[new_axis_a_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[4].points[new_axis_a_point_name])], 0, 1, 0, 0)
                        quadrants[4].points[new_axis_b_point_name] = self.occ.copy([(0, quadrants[1].points[new_axis_b_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[4].points[new_axis_b_point_name])], 0, 1, 0, 0)
                if symmetry == 'none':
                    if yc == 0.:
                        quadrants[3].points[new_point_name] = quadrants[2].points[new_point_name]
                        quadrants[3].points[new_axis_a_point_name] = quadrants[2].points[new_axis_a_point_name]
                        quadrants[3].points[new_axis_b_point_name] = quadrants[2].points[new_axis_b_point_name]
                    else:
                        quadrants[3].points[new_point_name] = self.occ.copy([(0, quadrants[2].points[new_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[3].points[new_point_name])], 0, 1, 0, 0)
                        quadrants[3].points[new_axis_a_point_name] = self.occ.copy([(0, quadrants[2].points[new_axis_a_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[3].points[new_axis_a_point_name])], 0, 1, 0, 0)
                        quadrants[3].points[new_axis_b_point_name] = self.occ.copy([(0, quadrants[2].points[new_axis_b_point_name])])[0][1]
                        self.occ.mirror([(0, quadrants[3].points[new_axis_b_point_name])], 0, 1, 0, 0)

                for quadrant, qq in quadrants.items():
                    qq.lines[line_name] = self.occ.addEllipseArc(
                        qq.points[line.kp1], qq.points[new_point_name], qq.points[new_axis_a_point_name if a > b else new_axis_b_point_name],
                        qq.points[line.kp2])

            else:
                raise ValueError('Hyper line {} not supported'.format(line.type))

        if symmetry != 'none':
            quadrants = self.md.geometries.iron_yoke.quadrants
            indexes = {'x_p': 1, 'y_p': 1, 'x_n': 1, 'y_n': 1}
            self.md.geometries.air_inf.points['center'] = self.occ.addPoint(0, 0, 0)
            for sym in list_bnds:
                if sym in ['x_p', 'y_p']:
                    quadrant = 1
                elif sym == 'x_n':
                    quadrant = 2
                else:  # 'y_n'
                    quadrant = 4
                sym_lines_tags[sym] = [x for _, x in sorted(zip(symmetric_bnds_order[sym[0]], sym_lines_tags[sym]))]

                self.symmetric_bnds[sym]['pnts'].append(['center', 0])
                self.symmetric_bnds[sym]['pnts'].sort(key=lambda x: x[1])
                self.md.geometries.symmetric_boundaries.lines[sym + '_center'] = self.occ.addLine(
                    self.md.geometries.air_inf.points['center'], quadrants[quadrant].points[self.symmetric_bnds[sym]['pnts'][1][0]])
                sym_lines_tags[sym].insert(0, self.md.geometries.symmetric_boundaries.lines[sym + '_center'])
                for i, pnt in enumerate(self.symmetric_bnds[sym]['pnts'][1:-1]):
                    pnt_next = self.symmetric_bnds[sym]['pnts'][i + 2][0]
                    if not any(pnt[0] in s and pnt_next in s for s in self.symmetric_bnds[sym]['line_pnts']):
                        self.md.geometries.symmetric_boundaries.lines[sym + '_' + pnt[0]] =\
                            self.occ.addLine(quadrants[quadrant].points[pnt[0]], quadrants[quadrant].points[pnt_next])
                        sym_lines_tags[sym].insert(indexes[sym], self.md.geometries.symmetric_boundaries.lines[sym + '_' + pnt[0]])
                    indexes[sym] += 1
            if symmetry == 'xy':
                self.symmetric_loop_lines['x'] = sym_lines_tags['x_p']
                sym_lines_tags['y_p'].reverse()
                self.symmetric_loop_lines['y'] = sym_lines_tags['y_p']
            elif symmetry == 'x':
                sym_lines_tags['x_n'].reverse()
                self.symmetric_loop_lines['x'] = sym_lines_tags['x_n'] + sym_lines_tags['x_p']
            elif symmetry == 'y':
                sym_lines_tags['y_p'].reverse()
                self.symmetric_loop_lines['y'] = sym_lines_tags['y_p'] + sym_lines_tags['y_n']

        # add all areas of each quadrant. Useful for brep curves and meshing
        for key in geometry_setting.areas:  # only consider areas that are implemented
            quadrants = getattr(self.md.geometries, key).quadrants
            for quadrant, qq in quadrants.items():
                for area_name, area in iron.hyper_areas.items(): ## all areas
                    def _add_loop():
                        # prevent additional curveloop generation when Enforcing the TSA mapping on the collar
                        if (run_type == 'TH'
                                and self.data.magnet.mesh.thermal.collar.Enforce_TSA_mapping
                                and (area_name.startswith('arc') and not area_name.startswith('arch') or area_name.startswith('arp'))
                        ): # need to disable the pole area too as it is linked to the same curve
                            qq.areas[area_name] = dM.Area() ## initialise area without loop
                        else:
                            qq.areas[area_name] = dM.Area(
                                loop=self.occ.addCurveLoop([qq.lines[line] for line in area.lines]))

                        if iron.hyper_areas[area_name].material not in getattr(self.md.domains.groups_entities, key) and \
                                iron.hyper_areas[area_name].material != 'BH_air': ## add the material to the keys
                            # for the collar region, it is possible to overwrite the material -> intercept it here
                            if key == 'collar' and (self.data.magnet.solve.collar.material != iron.hyper_areas[area_name].material) and self.data.magnet.solve.collar.material is not None:
                                logger.warning("Overwriting the collar material for area {} to {} ".format(area_name, self.data.magnet.solve.collar.material))
                                iron.hyper_areas[area_name].material = self.data.magnet.solve.collar.material
                            getattr(self.md.domains.groups_entities, key)[iron.hyper_areas[area_name].material] = []

                    identifier = next((k for k in geom_dict.keys() if re.match(f'^{k}', area_name[2:])),
                                      None)  # match key from geom_dict to the area name (see naming convention)

                    if key == self.inv_nc.get(identifier, None):  # re.sub(r'\d+', '', area_name[2:]),
                        _add_loop() # adds arch to collar, because c is in the naming convention of the collar
                    elif area_name.startswith('arh') and key == 'iron_yoke': # if not previous but it is a hole, assume iron
                        _add_loop()

        # define inner collar lines
        def define_inner_collar():
            """
                Defines the inner collar line used for the thermal TSA + for the A projection
            """
            self.occ.synchronize()
            # only works if the inner collar line is an arc -> just disable 'arc' and calc for all lines
            # alternative method. Find all "arc" lines and then select the closest to the center
            for quad, object in self.md.geometries.collar.quadrants.items():
                arc_line_tags = [object.lines[name] for name in object.lines.keys() if
                              self.geom.iron.hyper_lines[name].type == 'arc']
                closest_dist = 1000.
                for tag in arc_line_tags:
                    x, y, _ = gmsh.model.getValue(1, tag, [0.5]) # pick one point on the arc
                    dist = np.sqrt(x ** 2 + y ** 2)
                    if dist < closest_dist:
                        closest_dist = dist
                        closest_line = tag ## assumes it is only one line per quadrant
                self.md.geometries.collar.inner_boundary_tags[quad] = [closest_line]
        def define_collar_cooling():
            """
                Defines the cooling holes in the collar
            """
            self.occ.synchronize()
            line_names = [item for key in self.geom.iron.hyper_areas.keys() if 'ch' in key for item in self.geom.iron.hyper_areas[key].lines]
            # line names are the same in each quadrant. Tags are unique
            for quad, qq in self.md.geometries.collar.quadrants.items():
                self.md.geometries.collar.cooling_tags.extend([qq.lines[line] for line in line_names])
                # these tags are only used to be skipped for enfrocing_TSA_mapping

        # we need the inner collar lines if we want to do TSA, so no need to define it
        if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA_new: define_inner_collar()
        # we only need to specify the air holes if we want cooling OR if we enforce TSA nodes on the collar
        if run_type == 'TH' and (self.data.magnet.solve.thermal.collar_cooling.enabled or self.data.magnet.mesh.thermal.collar.Enforce_TSA_mapping): define_collar_cooling()



    def constructWedgeGeometry(self, use_TSA):
        """
            Generates points, hyper lines, and curve loops for the wedges
        """
        def _addMidLayerThinShellPoints(wedge_current):
            def __addThinShellPoints(side_case, mid_layer_ts):
                if side_case == 'outer':
                    mean_rad_current = (Func.points_distance([wedge_current.oH.x, wedge_current.oH.y], wedge_center) +
                                        Func.points_distance([wedge_current.oL.x, wedge_current.oL.y], wedge_center)) / 2
                else:
                    mean_rad_current = (Func.points_distance([wedge_current.iH.x, wedge_current.iH.y], wedge_center) +
                                        Func.points_distance([wedge_current.iL.x, wedge_current.iL.y], wedge_center)) / 2
                are_endpoints = {}
                for wnd_nr, wnd in pole.layers[wedge.order_l.layer + (1 if side_case == 'outer' else -1)].windings.items():
                    blk_nr_next = list(wnd.blocks.keys())[blk_list_current.index(wedge.order_l.block)]
                    blk_next = wnd.blocks[blk_nr_next]
                    ht_list_next = (list(blk_next.half_turns.keys()) if blk_nr_next == list(wnd.blocks.keys())[0] else list(
                        reversed(blk_next.half_turns.keys())))
                    hh = blk_next.half_turns[ht_list_next[-1]].corners.bare
                    ll = blk_next.half_turns[ht_list_next[0]].corners.bare
                    bc_next = Corner(oH=hh.oH, iH=hh.iH, oL=ll.oL, iL=ll.iL)
                    if side_case == 'outer':
                        block_list = self.md.geometries.coil.anticlockwise_order.coils[wedge.order_l.coil].layers[wedge.order_l.layer + 1]
                        blk_index = [blk.block for blk in block_list].index(blk_nr_next)
                        if blk_index + 1 == len(block_list): blk_index = -1
                        for blk in block_list[blk_index + 1:] + block_list[:blk_index + 1]:
                            if blk.winding == block_list[blk_index].winding:
                                ht_index = -1
                                break
                            elif blk.pole != block_list[blk_index].pole:
                                ht_index = 0
                                break
                        hh = blk_next.half_turns[ht_list_next[ht_index]].corners.bare
                        ll = blk_next.half_turns[ht_list_next[0 if ht_index == -1 else -1]].corners.bare
                        mean_rad_next = (Func.points_distance([hh.iH.x, hh.iH.y], wedge_center) +
                                         Func.points_distance([ll.iL.x, ll.iL.y], wedge_center)) / 2
                    else:
                        mean_rad_next = (Func.points_distance([bc_next.oH.x, bc_next.oH.y], wedge_center) +
                                         Func.points_distance([bc_next.oL.x, bc_next.oL.y], wedge_center)) / 2
                    mean_rad = (mean_rad_current + mean_rad_next) / 2
                    mid_layer = self.findMidLayerPoint(wedge_current.oH, bc_next.iH, wedge.corrected_center.outer, mean_rad)\
                        if side_case == 'outer' else self.findMidLayerPoint(wedge_current.iH, bc_next.oH, wedge.corrected_center.inner, mean_rad)
                    are_endpoints[wnd_nr] = self.getMidLayerEndpoints(wedge_current, bc_next, wedge_center, mid_layer_arc_pnt=mid_layer)
                for wnd_nr, wnd in pole.layers[wedge.order_l.layer + (1 if side_case == 'outer' else -1)].windings.items():
                    blk_nr_next = list(wnd.blocks.keys())[blk_list_current.index(wedge.order_l.block)]
                    blk_next = wnd.blocks[blk_nr_next]
                    is_first_blk_next = blk_nr_next == list(wnd.blocks.keys())[0]
                    ht_list_next = (list(blk_next.half_turns.keys()) if is_first_blk_next else list(
                        reversed(blk_next.half_turns.keys())))
                    if are_endpoints[wnd_nr]:  # this is empty if the wedge and the block are not radially adjacent
                        endpoints = are_endpoints[wnd_nr][0]
                        which_entity = are_endpoints[wnd_nr][1]
                        mid_layer_name = 'w' + str(wedge_nr) + '_' + str(blk_nr_next)
                        mid_layer_ts[mid_layer_name] = dM.Region()
                        ts_wdg = mid_layer_ts[mid_layer_name]
                        beg = ('w' + str(wedge_nr) if which_entity['lower'] == 'current' else str(ht_list_next[0])) + 'l'
                        ts_wdg.points[beg] = self.occ.addPoint(endpoints['lower'][0], endpoints['lower'][1], 0)
                        ht_lower_angles = {}
                        for ht_nr, ht in (blk_next.half_turns.items() if is_first_blk_next else reversed(blk_next.half_turns.items())):
                            for pnt1, pnt2, side in zip([[ht.corners.bare.iL.x, ht.corners.bare.iL.y], [ht.corners.bare.iH.x, ht.corners.bare.iH.y]],
                                                        [[ht.corners.bare.oL.x, ht.corners.bare.oL.y], [ht.corners.bare.oH.x, ht.corners.bare.oH.y]],
                                                        ['l', 'h']):
                                line_pars_current = Func.line_through_two_points(pnt1, pnt2)
                                intersect_prev = Func.intersection_between_arc_and_line(
                                    line_pars_current, [wedge_center, endpoints['higher'], endpoints['lower']])
                                if intersect_prev:
                                    ts_wdg.points[str(ht_nr) + side] = self.occ.addPoint(intersect_prev[0][0], intersect_prev[0][1], 0)
                                elif side == 'l':
                                    intrsc = Func.intersection_between_circle_and_line(line_pars_current, [wedge_center, endpoints['lower']], get_only_closest=True)[0]
                                    ht_lower_angles[ht_nr] = Func.arc_angle_between_point_and_abscissa([intrsc[0], intrsc[1]], wedge_center)
                        end = ('w' + str(wedge_nr) if which_entity['higher'] == 'current' else str(ht_list_next[-1])) + 'h'
                        if all('w' in pnt_name for pnt_name in list(ts_wdg.points.keys())):  # only one thin-shell 'within' the facing half-turn
                            wdg_angle_il = Func.arc_angle_between_point_and_abscissa([endpoints['lower'][0], endpoints['lower'][1]], wedge_center)
                            for ht_nr, ht in (blk_next.half_turns.items() if is_first_blk_next else reversed(blk_next.half_turns.items())):
                                if ht_lower_angles[ht_nr] > wdg_angle_il: break
                                prev_nr = str(ht_nr)
                            end = prev_nr + 'h'
                        ts_wdg.points[end] = self.occ.addPoint(endpoints['higher'][0], endpoints['higher'][1], 0)

                        # Create auxiliary thin shells for outliers
                        # if both corners belong to thin shells, continue
                        used_wdg_corners = [False, False]
                        for ep in are_endpoints.values():
                            if ep is not None:
                                if ep[1]['higher'] == 'current': used_wdg_corners[1] = True
                                if ep[1]['lower'] == 'current': used_wdg_corners[0] = True
                        if side_case == 'inner':
                            for ts_name in self.md.geometries.thin_shells.mid_layers_wdg_to_wdg.keys():
                                if ts_name[ts_name.index('_') + 1:] == 'w' + str(wedge_nr):
                                    for ep_key, ep in are_endpoints_wdg[int(ts_name[1:ts_name.index('_')])].items():
                                        if ep is not None:
                                            if ep[1]['higher'] == 'next': used_wdg_corners[1] = True
                                            if ep[1]['lower'] == 'next': used_wdg_corners[0] = True
                        else:
                            if wedge_nr in are_endpoints_wdg:
                                for ep in are_endpoints_wdg[wedge_nr].values():
                                    if ep is not None:
                                        if ep[1]['higher'] == 'current': used_wdg_corners[1] = True
                                        if ep[1]['lower'] == 'current': used_wdg_corners[0] = True
                        if not used_wdg_corners[1]:
                            for wdg_nr, wdg in self.geom.wedges.items():
                                if blk_nr_next == wdg.order_l.block: used_wdg_corners[1] = True
                        if not used_wdg_corners[0]:
                            for wdg_nr, wdg in self.geom.wedges.items():
                                if blk_nr_next == wdg.order_h.block: used_wdg_corners[0] = True
                        if not all(used_wdg_corners):
                            def ___create_aux_mid_layer_point(ss, points):
                                mid_layer_ts_aux[mid_layer_name] = dM.Region()
                                circle_pnt = [endpoints[ss][0], endpoints[ss][1]]
                                inter_pnt = Func.intersection_between_circle_and_line(Func.line_through_two_points(points[0], points[1]),
                                    [[wedge.corrected_center.outer.x, wedge.corrected_center.outer.y], circle_pnt], get_only_closest=True)[0]
                                mid_layer_ts_aux[mid_layer_name].points[str(wedge_nr) + ss[0]] = self.occ.addPoint(inter_pnt[0], inter_pnt[1], 0)
                                mid_layer_ts_aux[mid_layer_name].points['center'] = self.occ.addPoint(wedge_data[wedge_nr][1].x, wedge_data[wedge_nr][1].y, 0)
                                mid_layer_ts_aux[mid_layer_name].lines['w' + str(wedge_nr)] = 0
                            if which_entity['higher'] == 'current' and which_entity['lower'] != 'current':
                                ___create_aux_mid_layer_point('lower', [[wedge_current.iL.x, wedge_current.iL.y],
                                                                        [wedge_current.oL.x, wedge_current.oL.y]])
                            elif which_entity['higher'] != 'current' and which_entity['lower'] == 'current':
                                ___create_aux_mid_layer_point('higher', [[wedge_current.iH.x, wedge_current.iH.y],
                                                                         [wedge_current.oH.x, wedge_current.oH.y]])
                            else:  # whole block 'within' the facing wedge
                                for wdg_nr, wdg in self.geom.wedges.items():
                                    if blk_nr_next == wdg.order_h.block:
                                        ___create_aux_mid_layer_point('higher', [[wedge_current.iH.x, wedge_current.iH.y],
                                                                                 [wedge_current.oH.x, wedge_current.oH.y]])
                                        break
                                    elif blk_nr_next == wdg.order_l.block:
                                        ___create_aux_mid_layer_point('lower', [[wedge_current.iL.x, wedge_current.iL.y],
                                                                                [wedge_current.oL.x, wedge_current.oL.y]])
                                        break

            pole = self.geom.coil.coils[wedge.order_l.coil].poles[wedge.order_l.pole]
            blk_list_current = list(pole.layers[wedge.order_l.layer].windings[wedge.order_l.winding].blocks.keys())
            if wedge.order_l.layer < len(pole.layers):
                __addThinShellPoints('outer', self.md.geometries.thin_shells.mid_layers_wdg_to_ht)
            if wedge.order_l.layer > 1:
                __addThinShellPoints('inner', self.md.geometries.thin_shells.mid_layers_ht_to_wdg)

        wedges = self.md.geometries.wedges
        mid_layer_ts_aux = self.md.geometries.thin_shells.mid_layers_aux
        wedge_data = {}

        wdgs_corners = {}
        for wedge_nr, wedge in self.geom.wedges.items():
            wdgs_corners[wedge_nr] = {}
            corners = wdgs_corners[wedge_nr]
            if wedge.order_l.coil not in wedges.coils:
                wedges.coils[wedge.order_l.coil] = dM.WedgeLayer()
            if wedge.order_l.layer not in wedges.coils[wedge.order_l.coil].layers:
                wedges.coils[wedge.order_l.coil].layers[wedge.order_l.layer] = dM.WedgeRegion()
            wedge_layer = wedges.coils[wedge.order_l.coil].layers[wedge.order_l.layer]
            wedge_layer.wedges[wedge_nr] = dM.Region()
            wedge_reg = wedge_layer.wedges[wedge_nr]
            wedge_layer.block_prev[wedge_nr] = wedge.order_l.block
            wedge_layer.block_next[wedge_nr] = wedge.order_h.block
            wnd = self.geom.coil.coils[wedge.order_l.coil].poles[wedge.order_l.pole].layers[
                wedge.order_l.layer].windings[wedge.order_l.winding]
            wnd_next = self.geom.coil.coils[wedge.order_h.coil].poles[wedge.order_h.pole].layers[
                wedge.order_h.layer].windings[wedge.order_h.winding]
            block = wnd.blocks[wedge.order_l.block]
            block_next = wnd_next.blocks[wedge.order_h.block]
            corners['last_ht'] = int(list(self.md.geometries.coil.coils[wedge.order_l.coil].poles[wedge.order_l.pole].layers[
                                              wedge.order_l.layer].windings[wedge.order_l.winding].blocks[wedge.order_l.block].half_turns.areas.keys())[-1])
            corners['first_ht'] = int(list(self.md.geometries.coil.coils[wedge.order_h.coil].poles[wedge.order_h.pole].layers[
                                               wedge.order_h.layer].windings[wedge.order_h.winding].blocks[wedge.order_h.block].half_turns.areas.keys())[0])
            ht_current = block.half_turns[corners['last_ht']].corners.bare
            ht_next = block_next.half_turns[corners['first_ht']].corners.bare
            d_current = self.data.conductors[wnd.conductor_name].cable.th_insulation_along_width * 2
            d_next = self.data.conductors[wnd_next.conductor_name].cable.th_insulation_along_width * 2
            for pnt_close, pnt_far, wdg_corner, d in zip([ht_current.iH, ht_current.oH, ht_next.iL, ht_next.oL],
                                                         [ht_current.iL, ht_current.oL, ht_next.iH, ht_next.oH],
                                                         ['il', 'ol', 'ih', 'oh'], [d_current, d_current, d_next, d_next]):
                if abs(pnt_far.x - pnt_close.x) > 0.:
                    m = (pnt_far.y - pnt_close.y) / (pnt_far.x - pnt_close.x)
                    b = pnt_close.y - m * pnt_close.x
                    root = np.sqrt(- pnt_close.x ** 2 * m ** 2 - 2 * pnt_close.x * b * m + 2 * pnt_close.x * pnt_close.y * m
                                   - b ** 2 + 2 * b * pnt_close.y - pnt_close.y ** 2 + d ** 2 * m ** 2 + d ** 2)
                    pnt1_x = (pnt_close.x - b * m + pnt_close.y * m + root) / (m ** 2 + 1)
                    pnt1_y = m * pnt1_x + b
                    pnt2_x = (pnt_close.x - b * m + pnt_close.y * m - root) / (m ** 2 + 1)
                    pnt2_y = m * pnt2_x + b
                    corners[wdg_corner] = Coord(x=pnt1_x, y=pnt1_y) if Func.points_distance([pnt1_x, pnt1_y], [pnt_far.x, pnt_far.y]) >\
                        Func.points_distance([pnt_close.x, pnt_close.y], [pnt_far.x, pnt_far.y]) else Coord(x=pnt2_x, y=pnt2_y)
                else:
                    bore_cnt_x = self.geom.coil.coils[wedge.order_l.coil].bore_center.x
                    pnt1_y, pnt2_y = pnt_close.y + d, pnt_close.y - d
                    corners[wdg_corner] = Coord(x=pnt_close.x,
                                                y=pnt1_y if (wdg_corner[-1] == 'l' and pnt_close.x > bore_cnt_x) or
                                                            (wdg_corner[-1] == 'h' and pnt_close.x < bore_cnt_x) else pnt2_y)
                wedge_reg.points[wdg_corner] = self.occ.addPoint(corners[wdg_corner].x, corners[wdg_corner].y, 0)
            inner = Func.corrected_arc_center([self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.x,
                                               self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.y],
                                              [corners['ih'].x, corners['ih'].y], [corners['il'].x, corners['il'].y])
            outer = Func.corrected_arc_center([self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.x,
                                               self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.y],
                                              [corners['oh'].x, corners['oh'].y], [corners['ol'].x, corners['ol'].y])
            wedge_data[wedge_nr] = [Corner(iH=corners['ih'], oH=corners['oh'], iL=corners['il'], oL=corners['ol']), wedge.corrected_center.outer]
            wedge_reg.points['inner_center'] = self.occ.addPoint(inner[0], inner[1], 0)
            wedge_reg.points['outer_center'] = self.occ.addPoint(outer[0], outer[1], 0)
            wedge_reg.lines['h'] = self.occ.addLine(wedge_reg.points['ih'], wedge_reg.points['oh'])
            wedge_reg.lines['l'] = self.occ.addLine(wedge_reg.points['il'], wedge_reg.points['ol'])
            wedge_reg.lines['i'] = self.occ.addCircleArc(wedge_reg.points['ih'], wedge_reg.points['inner_center'], wedge_reg.points['il'])
            wedge_reg.lines['o'] = self.occ.addCircleArc(wedge_reg.points['oh'], wedge_reg.points['outer_center'], wedge_reg.points['ol'])
            """
            logger.warning("Using straight wedge geometry") # required for the projection
            wedge_reg.lines['i'] = self.occ.addLine(wedge_reg.points['ih'], wedge_reg.points['il'])
            wedge_reg.lines['o'] = self.occ.addLine(wedge_reg.points['oh'], wedge_reg.points['ol'])
            """
            wedge_reg.areas[str(wedge_nr)] = dM.Area(loop=self.occ.addCurveLoop(
                [wedge_reg.lines['i'], wedge_reg.lines['l'], wedge_reg.lines['o'], wedge_reg.lines['h']]))

        if use_TSA:
            # Wedge thin shells
            mid_layer_ts = self.md.geometries.thin_shells.mid_layers_wdg_to_wdg
            are_endpoints_wdg = {}
            for coil_nr, coil in self.md.geometries.wedges.coils.items():
                layer_list = list(coil.layers.keys())
                for layer_nr, layer in coil.layers.items():
                    if layer_list.index(layer_nr) + 1 < len(layer_list):
                        for wedge_nr, wedge in layer.wedges.items():
                            are_endpoints_wdg[wedge_nr] = {}
                            are_endpoints = are_endpoints_wdg[wedge_nr]
                            wedge_current = wedge_data[wedge_nr][0]
                            wedge_center = [wedge_data[wedge_nr][1].x, wedge_data[wedge_nr][1].y]
                            mean_rad_current = (Func.points_distance([wedge_current.oH.x, wedge_current.oH.y], wedge_center) +
                                                Func.points_distance([wedge_current.oL.x, wedge_current.oL.y], wedge_center)) / 2
                            for wdg_next_nr, wdg_next in coil.layers[layer_nr + 1].wedges.items():
                                if self.geom.wedges[wedge_nr].order_l.pole == self.geom.wedges[wdg_next_nr].order_l.pole:
                                    wedge_next = wedge_data[wdg_next_nr][0]
                                    mean_rad_next = (Func.points_distance([wedge_next.iH.x, wedge_next.iH.y], wedge_center) +
                                                     Func.points_distance([wedge_next.iL.x, wedge_next.iL.y], wedge_center)) / 2
                                    mean_rad = (mean_rad_current + mean_rad_next) / 2
                                    mid_layer = self.findMidLayerPoint(wedge_current.oH, wedge_next.iH, wedge_data[wedge_nr][1], mean_rad)
                                    are_endpoints[wdg_next_nr] = self.getMidLayerEndpoints(wedge_current, wedge_next, wedge_center, mid_layer_arc_pnt=mid_layer)
                                    if are_endpoints[wdg_next_nr]:  # this is empty if the wedges are not radially adjacent
                                        endpoints = are_endpoints[wdg_next_nr][0]
                                        mid_layer_name = 'w' + str(wedge_nr) + '_w' + str(wdg_next_nr)
                                        mid_layer_ts[mid_layer_name] = dM.Region()
                                        ts = mid_layer_ts[mid_layer_name]
                                        ts.points['center'] = self.occ.addPoint(wedge_center[0], wedge_center[1], 0)
                                        ts.points['beg'] = self.occ.addPoint(endpoints['lower'][0], endpoints['lower'][1], 0)
                                        end = 'w' + str(wedge_nr if are_endpoints[wdg_next_nr][1] == 'current' else wdg_next_nr)
                                        ts.points[end] = self.occ.addPoint(endpoints['higher'][0], endpoints['higher'][1], 0)

            # Half-turn thin shells
            for wedge_nr, wedge in self.geom.wedges.items():
                corners = wdgs_corners[wedge_nr]
                # Mid layer lines
                wedge_center = [self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.x,
                                self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.y]
                _addMidLayerThinShellPoints(Corner(iH=corners['ih'], oH=corners['oh'], iL=corners['il'], oL=corners['ol']))
                # Mid wedge-turn lines
                mid_turn_ts = self.md.geometries.thin_shells.mid_wedge_turn
                for adj_blk, ht, inner, outer in zip([wedge.order_l, wedge.order_h], [corners['last_ht'], corners['first_ht']],
                                                     [corners['il'], corners['ih']], [corners['ol'], corners['oh']]):
                    mid_turn_ts['w' + str(wedge_nr) + '_' + str(adj_blk.block)] = dM.Region()
                    ts = mid_turn_ts['w' + str(wedge_nr) + '_' + str(adj_blk.block)]
                    ht_corners = self.geom.coil.coils[adj_blk.coil].poles[adj_blk.pole].layers[
                        adj_blk.layer].windings[adj_blk.winding].blocks[adj_blk.block].half_turns[ht].corners.bare
                    ht_corners_i = ht_corners.iH if ht == corners['last_ht'] else ht_corners.iL
                    ht_corners_o = ht_corners.oH if ht == corners['last_ht'] else ht_corners.oL
                    mid_inner = [(inner.x + ht_corners_i.x) / 2, (inner.y + ht_corners_i.y) / 2]
                    mid_outer = [(outer.x + ht_corners_o.x) / 2, (outer.y + ht_corners_o.y) / 2]
                    line_name = 'w' + str(wedge_nr) + '_' + str(ht)
                    ts.points[line_name + '_i'] = self.occ.addPoint(mid_inner[0], mid_inner[1], 0)
                    ts.points[line_name + '_o'] = self.occ.addPoint(mid_outer[0], mid_outer[1], 0)

    def constructCoilGeometry(self, run_type):
        """
            Generates points, hyper lines, and curve loops for the coil half-turns
        """
        symmetry = self.data.magnet.geometry.electromagnetics.symmetry if run_type == 'EM' else 'none'
        # Sub domains angles: first key means 'from 0 to x'; second key means 'from x to 2*pi'
        if symmetry == 'xy':
            angle_range = {'to': np.pi / 2, 'from': 2 * np.pi}
        elif symmetry == 'x':
            angle_range = {'to': np.pi, 'from': 2 * np.pi}
        elif symmetry == 'y':
            angle_range = {'to': np.pi / 2, 'from': 3 / 2 * np.pi}
        elif symmetry == 'none':
            angle_range = {'to': 2 * np.pi, 'from': 0}
        else:
            raise Exception('Symmetry plane not supported.')

        def _addMidLayerThinShellPoints(pnt_params, ss, name, case):
            endpnts, cnt = ts_endpoints[name]
            if len(pnt_params) == 3:  # line parameters (cos-theta Rutherford)
                intersect[name] = Func.intersection_between_arc_and_line(pnt_params, [cnt, endpnts['higher'], endpnts['lower']])
                if intersect[name]:
                    intersect[name] = intersect[name][0]
                    pnt_angle = Func.arc_angle_between_point_and_abscissa(intersect[name], cnt)
            elif len(pnt_params) == 4:  # points coordinates (cos-theta Mono)
                wnd_next = list(pole.layers[layer_nr + (1 if case == 'current' else -1)].windings.keys())[
                    list(pole.layers[layer_nr].windings.keys()).index(winding_nr)]
                blk_next = pole.layers[layer_nr + (1 if case == 'current' else -1)].windings[wnd_next].blocks[
                    int(ts_name[ts_name.index('_') + 1:] if case == 'current' else ts_name[:ts_name.index('_')])]
                ht_next = blk_next.half_turns[list(blk_next.half_turns.keys() if is_first_blk else reversed(blk_next.half_turns.keys()))[ht_list.index(halfTurn_nr)]].corners.bare
                coord_next = (ht_next.iL if ss == 'l' else ht_next.iH) if case == 'current' else (ht_next.oL if ss == 'l' else ht_next.oH)
                pnt = [(pnt_params[2 if case == 'current' else 0] + coord_next.x) / 2, (pnt_params[3 if case == 'current' else 1] + coord_next.y) / 2]
                pnt_angle = Func.arc_angle_between_point_and_abscissa(pnt, cnt)
                pnt_angle_h = Func.arc_angle_between_point_and_abscissa(endpnts['higher'], cnt)
                pnt_angle_l = Func.arc_angle_between_point_and_abscissa(endpnts['lower'], cnt)
                intersect[name] = pnt if pnt_angle_h > pnt_angle > pnt_angle_l else None
            else:  # point coordinates (block-coil)
                pnt = [endpnts['higher'][0], pnt_params[1]] if coil.type == 'common-block-coil' else [pnt_params[0], endpnts['higher'][1]]
                if abs(endpnts['higher'][1]) > 1e-6:
                    pnt_angle = Func.arc_angle_between_point_and_abscissa(pnt, cnt)
                    pnt_angle_h = Func.arc_angle_between_point_and_abscissa(endpnts['higher'], cnt)
                    pnt_angle_l = Func.arc_angle_between_point_and_abscissa(endpnts['lower'], cnt)
                else:
                    pnt_angle = abs(pnt_params[0])
                    pnt_angle_h = abs(endpnts['higher'][0])
                    pnt_angle_l = abs(endpnts['lower'][0])
                intersect[name] = pnt if pnt_angle_h > pnt_angle > pnt_angle_l else None
            if intersect[name]:
                mid_layer_ts[name].mid_layers.points[str(halfTurn_nr) + ss] = \
                    self.occ.addPoint(intersect[name][0], intersect[name][1], 0)
                mid_layer_ts[name].point_angles[str(halfTurn_nr) + ss] = Func.sig_dig(pnt_angle)
            if len(pnt_params) == 2 and not intersect[name] and (abs(pnt_angle - pnt_angle_h) < 1e-6 or abs(pnt_angle - pnt_angle_l) < 1e-6):
                intersect[name] = pnt
            return intersect

        def _addMidLayerThinShellGroup(cl, for_mid_pole=False, mid_coil=False):
            is_first_blk_next = block_nr_next == list(winding_next.blocks.keys())[0]
            if 'solenoid' in cl.type:
                ht_list_next = list(reversed(block_next.half_turns.keys()) if layer_nr % 2 == 0 else list(block_next.half_turns.keys()))
            elif cl.type == 'reversed-block-coil':
                ht_list_next = (list(block_next.half_turns.keys()) if not is_first_blk_next else list(reversed(block_next.half_turns.keys())))
            else:
                ht_list_next = (list(block_next.half_turns.keys()) if is_first_blk_next else list(reversed(block_next.half_turns.keys())))
            hh = block_next.half_turns[ht_list_next[-1]].corners.bare
            ll = block_next.half_turns[ht_list_next[0]].corners.bare
            bc_next = Corner(oH=hh.oH, iH=hh.iH, oL=ll.oL, iL=ll.iL)
            if 'block-coil' in cl.type or (cable_type_curr in ['Mono', 'Ribbon'] and not mid_coil):
                center = [cl.bore_center.x, cl.bore_center.y]
                are_endpoints = self.getMidLayerEndpoints(bc_current, bc_next, center, coil_type=cl.type, cable_type=cable_type_curr, is_for_mid_pole=for_mid_pole)
            else:
                mean_rad_next = (Func.points_distance([bc_next.iH.x, bc_next.iH.y], [cl.bore_center.x, cl.bore_center.y]) +
                                 Func.points_distance([bc_next.iL.x, bc_next.iL.y], [cl.bore_center.x, cl.bore_center.y])) / 2
                mean_rad = (mean_rad_current + mean_rad_next) / 2
                mid_layer_h = self.findMidLayerPoint(bc_current.oH, bc_next.iH, cl.bore_center, mean_rad)
                mid_layer_l = self.findMidLayerPoint(bc_current.oL, bc_next.iL, cl.bore_center, mean_rad)
                mid_ht_next_i = int(len(ht_list_next) / 2) if len(ht_list_next) % 2 == 0 else round(len(ht_list_next) / 2)
                mid_ht_next = block_next.half_turns[ht_list_next[mid_ht_next_i - 1]].corners.insulated
                mid_layer_m = self.findMidLayerPoint(mid_ht_current.oH, mid_ht_next.iH, cl.bore_center, mean_rad)
                center = Func.arc_center_from_3_points(mid_layer_h, mid_layer_m, mid_layer_l)
                are_endpoints = self.getMidLayerEndpoints(bc_current, bc_next, center, mid_layer_arc_pnt=mid_layer_h, cable_type=cable_type_curr)
            if are_endpoints:  # this is empty if the blocks are not radially adjacent
                endpoints = are_endpoints[0]
                which_block = are_endpoints[1]
                mid_layer_name = blk_nr + '_' + str(block_nr_next)
                if for_mid_pole:
                    block_coil_mid_pole_next_blks_list[block_nr_next].append(mid_layer_name)
                    block_coil_ts_endpoints[mid_layer_name] = [endpoints, center]
                else:
                    if block_nr_next not in list(next_blks_list.keys()):
                        next_blks_list[block_nr_next] = []
                    next_blks_list[block_nr_next].append(mid_layer_name)
                    ts_endpoints[mid_layer_name] = [endpoints, center]
                mid_layer_ts[mid_layer_name] = dM.MidLayer()
                mid_layer_ts[mid_layer_name].half_turn_lists[blk_nr] = ht_list
                mid_layer_ts[mid_layer_name].half_turn_lists[str(block_nr_next)] = ht_list_next
                beg = (str(ht_list[0]) if which_block['lower'] == 'current' else str(ht_list_next[0])) + 'l'
                mid_layer_ts[mid_layer_name].mid_layers.points[beg] = \
                    self.occ.addPoint(endpoints['lower'][0], endpoints['lower'][1], 0)
                end = (str(ht_list[-1]) if which_block['higher'] == 'current' else str(ht_list_next[-1])) + 'h'
                mid_layer_ts[mid_layer_name].mid_layers.points[end] = \
                    self.occ.addPoint(endpoints['higher'][0], endpoints['higher'][1], 0)
                if not for_mid_pole or (for_mid_pole and abs(endpoints['higher'][1]) > 1e-6):
                    mid_layer_ts[mid_layer_name].point_angles[beg] =\
                        Func.sig_dig(Func.arc_angle_between_point_and_abscissa(endpoints['lower'], center))
                    mid_layer_ts[mid_layer_name].point_angles[end] =\
                        Func.sig_dig(Func.arc_angle_between_point_and_abscissa(endpoints['higher'], center))
                else:
                    mid_layer_ts[mid_layer_name].point_angles[beg] = abs(endpoints['lower'][0])
                    mid_layer_ts[mid_layer_name].point_angles[end] = abs(endpoints['higher'][0])

        # Create anticlockwise order of blocks
        present_blocks = []
        block_corner_angles = {}
        concentric_coils = self.md.geometries.coil.concentric_coils
        acw_order = self.md.geometries.coil.anticlockwise_order.coils
        self.md.geometries.coil.physical_order = self.geom.coil.physical_order
        for coil_nr, coil in self.geom.coil.coils.items():
            # if coil_nr not in block_corner_angles:
            block_corner_angles[coil_nr] = {}
            if (coil.bore_center.x, coil.bore_center.y) not in concentric_coils:
                concentric_coils[(coil.bore_center.x, coil.bore_center.y)] = []
            concentric_coils[(coil.bore_center.x, coil.bore_center.y)].append(coil_nr)
            for pole_nr, pole in coil.poles.items():
                for layer_nr, layer in pole.layers.items():
                    if layer_nr not in block_corner_angles[coil_nr]:
                        block_corner_angles[coil_nr][layer_nr] = {}
                    blk_angles = block_corner_angles[coil_nr][layer_nr]
                    for winding_nr, winding in layer.windings.items():
                        for block_nr, block in winding.blocks.items():
                            blk_angles[block_nr] = {'angle': Func.sig_dig(Func.arc_angle_between_point_and_abscissa(
                                [block.block_corners.iL.x, block.block_corners.iL.y],
                                [coil.bore_center.x, coil.bore_center.y])), 'keys': [pole_nr, winding_nr]}
                            higher_angle = Func.sig_dig(Func.arc_angle_between_point_and_abscissa(
                                [block.block_corners.iH.x, block.block_corners.iH.y],
                                [coil.bore_center.x, coil.bore_center.y]))
                            if ((blk_angles[block_nr]['angle'] <= angle_range['to'] and higher_angle <= angle_range['to']) or
                                    (angle_range['from'] <= blk_angles[block_nr]['angle'] and angle_range['from'] <= higher_angle)):
                                present_blocks.append(block_nr)
        for coil_nr, coil in block_corner_angles.items():
            acw_order[coil_nr] = dM.LayerOrder()
            for layer_nr, layer in coil.items():
                acw_order[coil_nr].layers[layer_nr] = []
                ordered_blocks = [[block_nr, block['angle'], block['keys']] for block_nr, block in layer.items()]
                ordered_blocks.sort(key=lambda x: x[1])
                for blk in ordered_blocks:
                    if blk[0] in present_blocks:
                        acw_order[coil_nr].layers[layer_nr].append(dM.AnticlockwiseOrder(pole=blk[2][0], winding=blk[2][1], block=blk[0]))

        # Check if there are concentric coils
        for bore_center, coils in concentric_coils.items():
            if len(coils) > 1:
                radii = []
                for coil_nr in coils:
                    lyr = self.geom.coil.coils[coil_nr].poles[1].layers[1]
                    blk = list(lyr.windings.keys())[0]
                    radii.append([coil_nr, Func.points_distance(bore_center, [lyr.windings[blk].blocks[blk].block_corners.iL.x, lyr.windings[blk].blocks[blk].block_corners.iL.y])])
                radii.sort(key=lambda x: x[1])
                concentric_coils[bore_center] = [rad[0] for rad in radii]

        if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA:
            mid_layer_ts = self.md.geometries.thin_shells.mid_layers_ht_to_ht
            # Collect block couples for block-coil mid-pole thin shells
            block_coil_mid_pole_next_blks_list = {}
            block_coil_ts_endpoints = {}
            for coil_nr, coil in self.md.geometries.coil.anticlockwise_order.coils.items():
                if self.geom.coil.coils[coil_nr].type in ['block-coil', 'reversed-block-coil']:
                    self.block_coil_mid_pole_blks[coil_nr] = []
                    first_lyr = list(coil.layers.keys())[0]
                    layer = coil.layers[first_lyr]
                    for nr, block_order in enumerate(layer):
                        blk_next_index = nr + 1 if nr + 1 < len(layer) else 0
                        if layer[blk_next_index].pole != block_order.pole:
                            self.block_coil_mid_pole_blks[coil_nr].append([block_order, layer[blk_next_index]])
                            block_coil_mid_pole_next_blks_list[layer[blk_next_index].block] = []
            # Mid pole lines for block-coils
            for coil_nr, coil in self.block_coil_mid_pole_blks.items():
                coil_geom = self.geom.coil.coils[coil_nr]
                for mid_pole in coil:
                    winding = self.geom.coil.coils[coil_nr].poles[mid_pole[0].pole].layers[1].windings[mid_pole[0].winding]
                    cable_type_curr = self.data.conductors[winding.conductor_name].cable.type
                    block_nr = mid_pole[0].block
                    blk_nr = str(block_nr)
                    block = winding.blocks[block_nr]
                    is_first_blk = block_nr == list(winding.blocks.keys())[0]
                    if coil_geom.type == 'reversed-block-coil':
                        ht_list = (list(block.half_turns.keys()) if not is_first_blk else list(reversed(block.half_turns.keys())))
                    else:
                        ht_list = (list(block.half_turns.keys()) if is_first_blk else list(reversed(block.half_turns.keys())))
                    hh = block.half_turns[ht_list[-1]].corners.bare
                    ll = block.half_turns[ht_list[0]].corners.bare
                    bc_current = Corner(oH=hh.oH, iH=hh.iH, oL=ll.oL, iL=ll.iL)
                    winding_next = self.geom.coil.coils[coil_nr].poles[mid_pole[1].pole].layers[1].windings[mid_pole[1].winding]
                    block_nr_next = mid_pole[1].block
                    block_next = winding_next.blocks[block_nr_next]
                    _addMidLayerThinShellGroup(coil_geom, for_mid_pole=True)

        mid_layer_ts_aux = self.md.geometries.thin_shells.mid_layers_aux
        self.md.geometries.coil.physical_order = self.geom.coil.physical_order
        if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA:
            next_blks_list = block_coil_mid_pole_next_blks_list.copy()
            ts_endpoints = block_coil_ts_endpoints.copy()
        for coil_nr, coil in self.geom.coil.coils.items():
            self.md.geometries.coil.coils[coil_nr] = dM.Pole()
            coils = self.md.geometries.coil.coils[coil_nr]
            coils.type = coil.type
            coils.bore_center = coil.bore_center
            for pole_nr, pole in coil.poles.items():
                coils.poles[pole_nr] = dM.Layer()
                poles = coils.poles[pole_nr]
                for layer_nr, layer in pole.layers.items():
                    poles.layers[layer_nr] = dM.Winding()
                    layers = poles.layers[layer_nr]
                    for winding_nr, winding in layer.windings.items():
                        cable_type_curr = self.data.conductors[winding.conductor_name].cable.type
                        layers.windings[winding_nr] = dM.Block(conductor_name=winding.conductor_name, conductors_number=winding.conductors_number)
                        windings = layers.windings[winding_nr]
                        blk_list_current = list(winding.blocks.keys())
                        for block_nr, block in winding.blocks.items():
                            if block_nr in present_blocks:
                                blk_nr = str(block_nr)
                                windings.blocks[block_nr] = dM.BlockData(current_sign=block.current_sign)
                                hts = windings.blocks[block_nr].half_turns
                                is_first_blk = block_nr == list(winding.blocks.keys())[0]
                                if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA:
                                    if 'solenoid' in coil.type:
                                        ht_list = (list(reversed(block.half_turns.keys()) if (layer_nr - 1) % 2 == 0 else list(block.half_turns.keys())))
                                    elif coil.type == 'reversed-block-coil':
                                        ht_list = (list(block.half_turns.keys()) if not is_first_blk else list(reversed(block.half_turns.keys())))
                                    else:
                                        ht_list = (list(block.half_turns.keys()) if is_first_blk else list(reversed(block.half_turns.keys())))
                                    hh = block.half_turns[ht_list[-1]].corners.bare
                                    ll = block.half_turns[ht_list[0]].corners.bare
                                    bc_current = Corner(oH=hh.oH, iH=hh.iH, oL=ll.oL, iL=ll.iL)
                                    # Mid layer lines
                                    mean_rad_current = (Func.points_distance([bc_current.oH.x, bc_current.oH.y], [coil.bore_center.x, coil.bore_center.y]) +
                                                        Func.points_distance([bc_current.oL.x, bc_current.oL.y], [coil.bore_center.x, coil.bore_center.y])) / 2
                                    mid_ht_current_i = int(len(ht_list) / 2) if len(ht_list) % 2 == 0 else round(len(ht_list) / 2)
                                    mid_ht_current = block.half_turns[ht_list[mid_ht_current_i - 1]].corners.insulated
                                    concentric_coil = concentric_coils[(coil.bore_center.x, coil.bore_center.y)]
                                    if layer_nr < len(pole.layers):
                                        for winding_nr_next, winding_next in pole.layers[layer_nr + 1].windings.items():
                                            if cable_type_curr == 'Rutherford' or\
                                                    (cable_type_curr in ['Mono', 'Ribbon'] and
                                                     list(pole.layers[layer_nr + 1].windings.keys()).index(winding_nr_next) == list(layer.windings.keys()).index(winding_nr)):
                                                blk_list_next = list(winding_next.blocks.keys())
                                                block_nr_next = blk_list_next[blk_list_current.index(block_nr)]
                                                block_next = winding_next.blocks[block_nr_next]
                                                _addMidLayerThinShellGroup(coil)
                                    elif concentric_coil.index(coil_nr) + 1 < len(concentric_coil):
                                        coil_nr_next = concentric_coil[concentric_coil.index(coil_nr) + 1]
                                        for pole_nr_next, pole_next in self.geom.coil.coils[coil_nr_next].poles.items():
                                            for layer_nr_next, layer_next in pole_next.layers.items():
                                                if layer_nr_next == 1:
                                                    for winding_nr_next, winding_next in layer_next.windings.items():
                                                        for block_nr_next, block_next in winding_next.blocks.items():
                                                            _addMidLayerThinShellGroup(coil, mid_coil=True)
                                else:
                                    blk_ins = windings.blocks[block_nr].insulation
                                    blk_ins.areas[blk_nr] = dM.Area()

                                if 'solenoid' in coil.type:
                                    ht_items = (list(reversed(block.half_turns.items()) if layer_nr - 1 % 2 == 0 else list(block.half_turns.items())))
                                elif coil.type == 'reversed-block-coil':
                                    ht_items = (block.half_turns.items() if not is_first_blk else reversed(block.half_turns.items()))
                                else:
                                    ht_items = (block.half_turns.items() if is_first_blk else reversed(block.half_turns.items()))
                                for halfTurn_nr, halfTurn in ht_items:
                                    ht_nr = str(halfTurn_nr)
                                    ht = halfTurn.corners.insulated
                                    hts.areas[ht_nr] = dM.Area()
                                    ht_b = halfTurn.corners.bare

                                    hts.points[ht_nr + 'ih'] = self.occ.addPoint(ht_b.iH.x, ht_b.iH.y, 0)
                                    hts.points[ht_nr + 'il'] = self.occ.addPoint(ht_b.iL.x, ht_b.iL.y, 0)
                                    hts.points[ht_nr + 'oh'] = self.occ.addPoint(ht_b.oH.x, ht_b.oH.y, 0)
                                    hts.points[ht_nr + 'ol'] = self.occ.addPoint(ht_b.oL.x, ht_b.oL.y, 0)

                                    hts.lines[ht_nr + 'i'] = self.occ.addLine(hts.points[ht_nr + 'ih'], hts.points[ht_nr + 'il'])
                                    hts.lines[ht_nr + 'o'] = self.occ.addLine(hts.points[ht_nr + 'oh'], hts.points[ht_nr + 'ol'])
                                    hts.lines[ht_nr + 'l'] = self.occ.addLine(hts.points[ht_nr + 'il'], hts.points[ht_nr + 'ol'])
                                    hts.lines[ht_nr + 'h'] = self.occ.addLine(hts.points[ht_nr + 'ih'], hts.points[ht_nr + 'oh'])

                                    if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA:
                                        intersection = {}
                                        # Create mid layer points and compute their angle to the x-axis
                                        for mid_lyr_type in ['current', 'previous']:
                                            for pnt1, pnt2, side in zip(
                                                    [[ht_b.iH.x, ht_b.iH.y], [ht_b.iL.x, ht_b.iL.y]],
                                                    [[ht_b.oH.x, ht_b.oH.y], [ht_b.oL.x, ht_b.oL.y]], ['h', 'l']):
                                                if (cable_type_curr in ['Mono', 'Ribbon'] and coil.type == 'cos-theta' and
                                                        (layer_nr < len(pole.layers) and mid_lyr_type == 'current' or layer_nr > 1 and mid_lyr_type == 'previous')):
                                                    pnts_input = pnt1 + pnt2
                                                elif coil.type == 'cos-theta' and (cable_type_curr == 'Rutherford' or cable_type_curr in ['Mono', 'Ribbon'] and\
                                                        (layer_nr == len(pole.layers) and mid_lyr_type == 'current' or layer_nr == 1 and mid_lyr_type == 'previous')):
                                                    pnts_input = Func.line_through_two_points(pnt1, pnt2)
                                                elif 'block-coil' in coil.type:
                                                    pnts_input = pnt1
                                                intersect = {}
                                                if mid_lyr_type == 'current':
                                                    # Current mid-layer
                                                    for ts_name in ts_endpoints.keys():
                                                        if blk_nr == ts_name[:ts_name.index('_')]:
                                                            _addMidLayerThinShellPoints(pnts_input, side, ts_name, mid_lyr_type)
                                                elif mid_lyr_type == 'previous':
                                                    # Previous mid-layer
                                                    if block_nr in next_blks_list:
                                                        for ts_name in next_blks_list[block_nr]:
                                                            _addMidLayerThinShellPoints(pnts_input, side, ts_name, mid_lyr_type)
                                                for key, value in intersect.items():
                                                    if key in intersection:
                                                        intersection[key][side] = value
                                                    else:
                                                        intersection[key] = {side: value}

                                        # Search for half turns that face thin shells only partially
                                        def __create_aux_mid_layer_point(ss, points):
                                            mid_layer_ts_aux[key] = dM.Region()
                                            if 'block-coil' in coil.type:
                                                inter_pnt = [points[0], ts_endpoints[key][0][ss][1]]
                                            else:
                                                inter_pnt = Func.intersection_between_circle_and_line(Func.line_through_two_points(points[0], points[1]),
                                                    [ts_endpoints[key][1], ts_endpoints[key][0][ss]], get_only_closest=True)[0]
                                            mid_layer_ts_aux[key].points[str(halfTurn_nr) + ss[0]] = self.occ.addPoint(inter_pnt[0], inter_pnt[1], 0)
                                            mid_layer_ts_aux[key].lines[blk_nr] = 0
                                        for key, value in intersection.items():
                                            first_blk, second_blk = key.split('_')
                                            if 'block-coil' in coil.type: #any(int(second_blk) == blk_order.block for blk_order in acw_order[coil_nr].layers[layer_nr]):  # block-coil mid-pole case
                                                if value['h'] and not value['l']:
                                                    __create_aux_mid_layer_point('lower', [ht_b.iL.x, ht_b.iL.y])
                                                elif value['l'] and not value['h']:
                                                    __create_aux_mid_layer_point('higher', [ht_b.iH.x, ht_b.iH.y])
                                            else:
                                                relevant_blk = int(first_blk) if second_blk == blk_nr else int(second_blk)
                                                if layer_nr == len(pole.layers) and blk_nr == first_blk:
                                                    lyr_blks = acw_order[coil_nr + 1].layers[1]
                                                elif layer_nr == 1 and blk_nr == second_blk:
                                                    lyr_blks = acw_order[coil_nr - 1].layers[len(acw_order[coil_nr - 1].layers)]
                                                else:
                                                    lyr_blks = acw_order[coil_nr].layers[layer_nr + (1 if first_blk == blk_nr else -1)]
                                                for nr, block_order in enumerate(lyr_blks):
                                                    if block_order.block == relevant_blk:
                                                        block_order_curr = block_order
                                                        block_order_prev = lyr_blks[-1] if nr == 0 else lyr_blks[nr - 1]
                                                        block_order_next = lyr_blks[0] if nr + 1 == len(lyr_blks) else lyr_blks[nr + 1]
                                                        break
                                                if value['h'] and not value['l'] and block_order_curr.winding == block_order_prev.winding:
                                                    __create_aux_mid_layer_point('lower', [[ht_b.iL.x, ht_b.iL.y], [ht_b.oL.x, ht_b.oL.y]])
                                                elif value['l'] and not value['h'] and block_order_curr.winding == block_order_next.winding:
                                                    __create_aux_mid_layer_point('higher', [[ht_b.iH.x, ht_b.iH.y], [ht_b.oH.x, ht_b.oH.y]])
                                    else:
                                        blk_ins.points[ht_nr + 'ih'] = self.occ.addPoint(ht.iH.x, ht.iH.y, 0)
                                        blk_ins.points[ht_nr + 'il'] = self.occ.addPoint(ht.iL.x, ht.iL.y, 0)
                                        blk_ins.points[ht_nr + 'oh'] = self.occ.addPoint(ht.oH.x, ht.oH.y, 0)
                                        blk_ins.points[ht_nr + 'ol'] = self.occ.addPoint(ht.oL.x, ht.oL.y, 0)

                                    hts.areas[ht_nr].loop = self.occ.addCurveLoop(
                                        [hts.lines[ht_nr + 'i'],  # inner
                                         hts.lines[ht_nr + 'l'],  # lower
                                         hts.lines[ht_nr + 'o'],  # outer
                                         hts.lines[ht_nr + 'h']])  # higher

                                # Build wire order of the insulation lines of the current block
                                if run_type == 'TH' and not self.data.magnet.geometry.thermal.use_TSA:
                                    ht_list = list(hts.areas.keys())
                                    ht_list.extend(list(reversed(ht_list))[1:])
                                    self.blk_ins_lines[block_nr] = ['l']
                                    for nr, ht_nr in enumerate(ht_list):
                                        if nr + 1 == winding.conductors_number:  # end of first round
                                            self.blk_ins_lines[block_nr].extend([ht_nr + 'i', 'h', ht_nr + 'o'])
                                        else:
                                            if nr + 1 < winding.conductors_number:  # within first round
                                                self.blk_ins_lines[block_nr].extend([ht_nr + 'i', ht_nr + 'i' + ht_list[nr + 1]])
                                            else:  # within second round
                                                self.blk_ins_lines[block_nr].extend([ht_nr + 'o' + ht_list[nr - 1], ht_nr + 'o'])

    def constructInsulationGeometry(self):
        """
            Generates points, hyper lines, and curve loops for the coil insulations
        """
        def _createMidPoleLines(case, cnt=0):
            if 'block-coil' in geom_coil.type:
                if case == 'inner':
                    group.lines['mid_pole_' + case[0]] = self.occ.addLine(ins_pnt[first_ht_curr + case[0] + 'l'], ins_pnt_opposite[last_ht_prev + case[0] + 'h'])
                    ordered_lines[group_nr].append(['mid_pole_' + case[0], (len(coil.layers) * 2) * 1e3 + 5e2, group.lines['mid_pole_' + case[0]]])
                else:
                    group.lines['mid_pole_' + case[0]] = self.occ.addLine(ins_pnt[last_ht_curr + 'ih'], ins_pnt_opposite[first_ht_prev + 'il'])
                    ordered_lines[group_nr].append(['mid_pole_' + case[0], 0, group.lines['mid_pole_' + case[0]]])
            else:
                ht_curr = geom_coil.poles[block_order.pole].layers[layer_nr].windings[block_order.winding].blocks[
                    block_order.block].half_turns[int(first_ht_curr)].corners.insulated
                ht_prev = geom_coil.poles[block_order_prev.pole].layers[layer_nr].windings[block_order_prev.winding].blocks[
                    block_order_prev.block].half_turns[int(last_ht_prev)].corners.insulated
                pnt_curr = [ht_curr.iL.x, ht_curr.iL.y] if case == 'inner' else [ht_curr.oL.x, ht_curr.oL.y]
                pnt_prev = [ht_prev.iH.x, ht_prev.iH.y] if case == 'inner' else [ht_prev.oH.x, ht_prev.oH.y]
                if Func.points_distance(pnt_curr, pnt_prev) > 1e-6:
                    correct_center = Func.corrected_arc_center([self.md.geometries.coil.coils[coil_nr].bore_center.x, self.md.geometries.coil.coils[coil_nr].bore_center.y],
                                                               [ht_curr.iL.x, ht_curr.iL.y] if case == 'inner' else [ht_curr.oL.x, ht_curr.oL.y],
                                                               [ht_prev.iH.x, ht_prev.iH.y] if case == 'inner' else [ht_prev.oH.x, ht_prev.oH.y])
                    ln_name = 'mid_pole_' + str(block_order_prev.block) + '_' + str(block_order.block) + '_' + case[0]
                    group.lines[ln_name] = self.occ.addCircleArc(ins_pnt[first_ht_curr + case[0] + 'l'],
                                                                 self.occ.addPoint(correct_center[0], correct_center[1], 0),
                                                                 ins_pnt_opposite[last_ht_prev + case[0] + 'h'])
                    # self.occ.addLine(ins_pnt[first_ht_curr + case[0] + 'l'], ins_pnt_opposite[last_ht_prev + case[0] + 'h'])
                    cnt += 1 if case == 'inner' else -1
                    ordered_lines[group_nr].append([ln_name, cnt, group.lines[ln_name]])
                return cnt

        def _createMidWindingLines(case, cnt):
            name = 'mid_wind_' + str(block_order_prev.block) + '_' + str(block_order.block) + '_' + case[0]
            # Create corrected center
            blk1 = self.geom.coil.coils[coil_nr].poles[blks_info[str(block_order.block)][0]].layers[
                blks_info[str(block_order.block)][1]].windings[blks_info[str(block_order.block)][2]].blocks[int(str(block_order.block))]
            blk2 = self.geom.coil.coils[coil_nr].poles[blks_info[str(block_order_prev.block)][0]].layers[
                blks_info[str(block_order_prev.block)][1]].windings[blks_info[str(block_order_prev.block)][2]].blocks[int(block_order_prev.block)]
            pnt1 = blk1.half_turns[int(first_ht_curr)].corners.insulated.iL if case == 'inner' else blk1.half_turns[int(first_ht_curr)].corners.insulated.oL
            pnt2 = blk2.half_turns[int(last_ht_prev)].corners.insulated.iH if case == 'inner' else blk2.half_turns[int(last_ht_prev)].corners.insulated.oH
            outer_center = Func.corrected_arc_center([self.md.geometries.coil.coils[coil_nr].bore_center.x,
                                                      self.md.geometries.coil.coils[coil_nr].bore_center.y],
                                                     [pnt1.x, pnt1.y], [pnt2.x, pnt2.y])
            group.lines[name] = self.occ.addCircleArc(ins_pnt[first_ht_curr + case[0] + 'l'],
                                                      self.occ.addPoint(outer_center[0], outer_center[1], 0), ins_pnt_opposite[last_ht_prev + case[0] + 'h'])
            cnt += 1 if case == 'inner' else -1
            ordered_lines[group_nr].append([name, cnt, group.lines[name]])
            return cnt

        def _createInnerOuterLines(case, cnt):
            # Create half turn lines
            idxs = [1, round(len(self.blk_ins_lines[block_order.block]) / 2), 1] if case == 'inner'\
                else [len(self.blk_ins_lines[block_order.block]) - 1, round(len(self.blk_ins_lines[block_order.block]) / 2), -1]
            lns = self.blk_ins_lines[block_order.block][idxs[0]:idxs[1]:idxs[2]]
            for ln_nr, ln_name in enumerate(lns):
                skip_cnt = False
                if ln_name[-1].isdigit():
                    try:
                        group.lines[ln_name] = self.occ.addLine(ins_pnt[ln_name[:ln_name.index(case[0])] + case[0] + 'h'],
                                                                ins_pnt[ln_name[ln_name.index(case[0]) + 1:] + case[0] + 'l'])
                    except:
                        skip_cnt = True
                        next_line = lns[ln_nr + 1]
                        pos = 'first' if next_line[:-1] == ln_name[:ln_name.index(case[0])] else 'second'
                        lns[ln_nr + 1] = next_line + (ln_name[ln_name.index(case[0]) + 1:] + 'l' if pos == 'first' else ln_name[:ln_name.index(case[0])] + 'h')
                elif ln_name[-1] in ['i', 'o']:
                    group.lines[ln_name] = self.occ.addLine(ins_pnt[ln_name + 'l'], ins_pnt[ln_name + 'h'])
                else:
                    group.lines[ln_name] = self.occ.addLine(ins_pnt[ln_name[:ln_name.index(case[0])] + case[0] + ln_name[-1]],
                                                            ins_pnt[ln_name[ln_name.index(case[0]) + 1:-1] + case[0] + ln_name[-1]])
                if not skip_cnt:
                    cnt += 1 if case == 'inner' else -1
                    ordered_lines[group_nr].append([ln_name, cnt, group.lines[ln_name]])
            return cnt

        def _computePointAngle(case):
            points_angles = pa_next if case == 'outer' else pa_prev
            current_ht_h = [current_ht.oH.x, current_ht.oH.y] if case == 'outer' else [current_ht.iH.x, current_ht.iH.y]
            if ht_nr == 0:
                current_ht_l = [current_ht.oL.x, current_ht.oL.y] if case == 'outer' else [current_ht.iL.x, current_ht.iL.y]
                if 'block-coil' in geom_coil.type: current_ht_l[1] = 1 if current_ht_l[1] > 0 else -1
                points_angles[str(block_order.block) + '_' + ht_name + 'l'] = Func.arc_angle_between_point_and_abscissa(current_ht_l, center)
            if ht_nr == len(ht_list) - 1:
                name = ht_name + 'h'
                coord = current_ht_h
            else:  # for mid half turns, get the outer corner
                next_ht_ins = geom_hts[int(ht_list[ht_nr + 1])].corners.insulated
                next_ht = [next_ht_ins.oL.x, next_ht_ins.oL.y] if case == 'outer' else [next_ht_ins.iL.x, next_ht_ins.iL.y]
                condition = (Func.points_distance(current_ht_h, center) > Func.points_distance(next_ht, center))\
                    if case == 'outer' else (Func.points_distance(current_ht_h, center) < Func.points_distance(next_ht, center))
                if condition:
                    name = ht_name + 'h'
                    coord = current_ht_h
                else:
                    name = ht_list[ht_nr + 1] + 'l'
                    coord = next_ht
            if 'block-coil' in geom_coil.type: coord[1] = 1 if coord[1] > 0 else -1
            points_angles[str(block_order.block) + '_' + name] = Func.arc_angle_between_point_and_abscissa(coord, center)

        ins = self.md.geometries.insulation
        for coil_nr, coil in self.md.geometries.coil.anticlockwise_order.coils.items():
            aux_coil = self.md.geometries.coil.coils[coil_nr]
            geom_coil = self.geom.coil.coils[coil_nr]
            groups = len(geom_coil.poles)
            count = {}
            ordered_lines = {}
            points_angle = {}
            blks_info = {}
            ending_line = {}
            center = [geom_coil.bore_center.x, geom_coil.bore_center.y]
            if coil_nr not in ins.coils:
                ins.coils[coil_nr] = dM.InsulationGroup()
            ins_groups = ins.coils[coil_nr].group
            for layer_nr, layer in coil.layers.items():
                group_nr = 1
                wnd_nr = len(aux_coil.poles[1].layers[layer_nr].windings)
                ordered_layer = layer[wnd_nr:] + layer[:wnd_nr] if layer[0].pole != layer[-1].pole else layer
                for nr, block_order in enumerate(ordered_layer):
                    blks_info[str(block_order.block)] = [block_order.pole, layer_nr, block_order.winding]
                    # Get previous block in anticlockwise order
                    block_order_prev = ordered_layer[-1] if nr == 0 else ordered_layer[nr - 1]
                    # Update insulation group
                    if block_order.winding == block_order_prev.winding:
                        group_nr = group_nr + 1 if group_nr < groups else 1
                    # Initialize dicts
                    if group_nr not in ins_groups:
                        ins_groups[group_nr] = dM.InsulationRegion()
                        points_angle[group_nr] = {}
                        ordered_lines[group_nr] = []
                        count[group_nr] = [0, (len(coil.layers) + 1) * 1e3]
                    group = ins_groups[group_nr].ins
                    ins_groups[group_nr].blocks.append([block_order.pole, layer_nr, block_order.winding, block_order.block])
                    # Find the wedge
                    if block_order.pole == block_order_prev.pole and block_order.winding != block_order_prev.winding:
                        for wdg, blk in self.md.geometries.wedges.coils[coil_nr].layers[layer_nr].block_prev.items():
                            if blk == block_order_prev.block:
                                ins_groups[group_nr].wedges.append([layer_nr, wdg])
                                break
                    if layer_nr < len(coil.layers):
                        mid_layer_next = str(layer_nr) + '_' + str(layer_nr + 1)
                        if mid_layer_next not in points_angle[group_nr]:
                            points_angle[group_nr][mid_layer_next] = {}
                        pa_next = points_angle[group_nr][mid_layer_next]
                    if layer_nr > 1:
                        mid_layer_prev = str(layer_nr - 1) + '_' + str(layer_nr)
                        pa_prev = points_angle[group_nr][mid_layer_prev]
                    # Get point tags of insulation
                    ins_pnt = aux_coil.poles[block_order.pole].layers[layer_nr].windings[block_order.winding].blocks[
                        block_order.block].insulation.points
                    # Get relevant info for line names
                    first_ht_curr = self.blk_ins_lines[block_order.block][1][:-1]
                    last_ht_prev = list(aux_coil.poles[block_order_prev.pole].layers[
                        layer_nr].windings[block_order_prev.winding].blocks[block_order_prev.block].half_turns.areas.keys())[-1]
                    ins_pnt_opposite = aux_coil.poles[block_order_prev.pole].layers[
                        layer_nr].windings[block_order_prev.winding].blocks[block_order_prev.block].insulation.points
                    if 'cos-theta' == geom_coil.type:
                        # Create lower and higher angle lines
                        if block_order.winding == block_order_prev.winding:
                            group.lines[str(layer_nr) + 'l'] = self.occ.addLine(ins_pnt[first_ht_curr + 'il'], ins_pnt[first_ht_curr + 'ol'])
                            ordered_lines[group_nr].append([str(layer_nr) + 'l', (len(coil.layers) * 2 - layer_nr + 1) * 1e3, group.lines[str(layer_nr) + 'l']])
                            ending_line[group_nr - 1 if group_nr > 1 else groups] =\
                                [ins_pnt_opposite[last_ht_prev + 'ih'], ins_pnt_opposite[last_ht_prev + 'oh']]
                        # Create inner lines of insulation group
                        if layer_nr == 1:
                            if block_order.pole != block_order_prev.pole:
                                count[group_nr][0] = _createMidPoleLines('inner', count[group_nr][0])
                            if block_order.pole == block_order_prev.pole and block_order.winding != block_order_prev.winding:
                                count[group_nr][0] = _createMidWindingLines('inner', count[group_nr][0])
                            count[group_nr][0] = _createInnerOuterLines('inner', count[group_nr][0])
                        # Create outer lines of insulation group
                        if layer_nr == len(coil.layers):
                            if block_order.pole != block_order_prev.pole:
                                count[group_nr][1] = _createMidPoleLines('outer', count[group_nr][1])
                            if block_order.pole == block_order_prev.pole and block_order.winding != block_order_prev.winding:
                                count[group_nr][1] = _createMidWindingLines('outer', count[group_nr][1])
                            count[group_nr][1] = _createInnerOuterLines('outer', count[group_nr][1])
                    elif 'block-coil' in geom_coil.type:
                        last_ht_curr = self.blk_ins_lines[block_order.block][self.blk_ins_lines[block_order.block].index('h') - 1][:-1]
                        first_ht_prev = list(aux_coil.poles[block_order_prev.pole].layers[layer_nr].windings[
                                                 block_order_prev.winding].blocks[block_order_prev.block].half_turns.areas.keys())[0]
                        # Create lower and higher angle lines
                        if block_order.winding == block_order_prev.winding:
                            group.lines[str(layer_nr) + 'l'] = self.occ.addLine(ins_pnt[first_ht_curr + 'il'], ins_pnt[first_ht_curr + 'ol'])
                            ordered_lines[group_nr].append([str(layer_nr) + 'l', (len(coil.layers) * 4 - layer_nr + 1) * 1e3, group.lines[str(layer_nr) + 'l']])
                            ending_line[group_nr - 1 if group_nr > 1 else groups] =\
                                [ins_pnt_opposite[last_ht_prev + 'ih'], ins_pnt_opposite[last_ht_prev + 'oh']]
                            group.lines[str(layer_nr) + 'bh'] = self.occ.addLine(ins_pnt[last_ht_curr + 'ih'], ins_pnt[last_ht_curr + 'oh'])
                            ordered_lines[group_nr].append([str(layer_nr) + 'bh', (len(coil.layers) * 2 + layer_nr) * 1e3, group.lines[str(layer_nr) + 'bh']])
                        # Create inner lines of insulation group
                        if block_order.pole != block_order_prev.pole:
                            if layer_nr == 1:
                                _createMidPoleLines('inner')
                                _createMidPoleLines('outer')
                            group.lines[str(layer_nr) + 'bl'] = self.occ.addLine(ins_pnt[first_ht_curr + 'il'], ins_pnt[first_ht_curr + 'ol'])
                            ordered_lines[group_nr].append([str(layer_nr) + 'bl', (len(coil.layers) * 2 - layer_nr + 1) * 1e3, group.lines[str(layer_nr) + 'bl']])
                        # Create outer lines of insulation group
                        if layer_nr == len(coil.layers):
                            count[group_nr][1] = _createInnerOuterLines(
                                'outer', (len(coil.layers) * 4 - layer_nr + 1) * 1e3 if block_order.winding == block_order_prev.winding else (len(coil.layers) + 1) * 1e3)
                    # Store info about the angle of each point in between layers
                    ht_list = list(aux_coil.poles[block_order.pole].layers[
                        layer_nr].windings[block_order.winding].blocks[block_order.block].half_turns.areas.keys())
                    geom_hts = geom_coil.poles[block_order.pole].layers[
                        layer_nr].windings[block_order.winding].blocks[block_order.block].half_turns
                    for ht_nr, ht_name in enumerate(ht_list):  # half turns in anticlockwise order
                        current_ht = geom_hts[int(ht_name)].corners.insulated
                        if layer_nr < len(coil.layers):  # if it's not the last layer, fetch all outer corners angles
                            _computePointAngle('outer')
                        if layer_nr > 1:  # if it's not the first layer, fetch all inner corners angles
                            _computePointAngle('inner')
                # Create closing lines
                for grp_nr, grp in ending_line.items():
                    ins_groups[grp_nr].ins.lines[str(layer_nr) + 'h'] = self.occ.addLine(grp[0], grp[1])
                    ordered_lines[grp_nr].append([str(layer_nr) + 'h', layer_nr * 1e3, ins_groups[grp_nr].ins.lines[str(layer_nr) + 'h']])
            # Create lines connecting different layers and generate closed loops
            for group_nr, group in points_angle.items():
                ins_group = ins_groups[group_nr].ins
                for mid_l_name, mid_l in group.items():
                    first_layer = mid_l_name[:mid_l_name.index('_')]
                    # Correct angles if the group crosses the abscissa
                    max_angle = max(mid_l.values())
                    max_diff = max_angle - min(mid_l.values())
                    if max_diff > np.pi:
                        for pnt_name, angle in mid_l.items():
                            if angle < max_diff / 2:
                                mid_l[pnt_name] = angle + max_angle
                    # Order points according to angle
                    ordered_pnts = [[pnt_name, angle] for pnt_name, angle in mid_l.items()]
                    ordered_pnts.sort(key=lambda x: x[1])
                    ordered_names = [x[0] for x in ordered_pnts]
                    for case in ['beg', 'end']:
                        past_blocks = []
                        sides = ['l', 'o', 'h', 'l'] if case == 'beg' else ['h', 'i', 'l', 'h']
                        # count = int(first_layer) * 1e3 + 5e2 if case == 'end' else (len(coil.layers) * 2 - int(first_layer)) * 1e3 + 5e2
                        for i in range(2 if 'block-coil' in geom_coil.type else 1):
                            count = int(first_layer) * 1e3 + 5e2 if i == 0 else (len(coil.layers) * 2 + int(first_layer)) * 1e3 + 5e2
                            if case == 'beg':
                                pnt_position = 0 if i == 0 else int(len(ordered_names) / 2)
                            else:
                                pnt_position = -1 if i == 0 else int(len(ordered_names) / 2 - 1)
                            first_block = ordered_names[pnt_position][:ordered_names[pnt_position].index('_')]  # ordered_pnts[pnt_position][0][:ordered_pnts[pnt_position][0].index('_')] #
                            ordered_search_names = ordered_names[pnt_position::1 if case == 'beg' else -1]
                            for nr, pnt in enumerate(ordered_search_names[1:], 1):  # enumerate(ordered_names if case == 'beg' else reversed(ordered_names)):  #
                                current_blk = pnt[:pnt.index('_')]
                                ins_pnt = aux_coil.poles[blks_info[current_blk][0]].layers[blks_info[current_blk][1]].windings[
                                    blks_info[current_blk][2]].blocks[int(current_blk)].insulation.points
                                prev_pnt = ordered_search_names[nr - 1]  # ordered_pnts[nr - 1 if case == 'beg' else - nr][0] #
                                prev_blk = prev_pnt[:prev_pnt.index('_')]
                                start_pnt_name = prev_pnt[prev_pnt.index('_') + 1:-1] + ('o' if str(blks_info[prev_blk][1]) == first_layer else 'i')
                                ins_pnt_prev = aux_coil.poles[blks_info[prev_blk][0]].layers[blks_info[prev_blk][1]].windings[
                                    blks_info[prev_blk][2]].blocks[int(prev_blk)].insulation.points
                                # Create lines when you find the first edge belonging to a block of the opposite layer
                                if blks_info[current_blk][1] != blks_info[first_block][1]:
                                    pnt_tag_name = pnt[pnt.index('_') + 1:-1] + ('o' if str(blks_info[current_blk][1]) == first_layer else 'i') + ('l' if pnt[-1] == 'l' else 'h')
                                    pnt_tag_name_opposite = start_pnt_name + ('l' if prev_pnt[-1] == 'l' else 'h')
                                    opp_blk_ins_lines = self.blk_ins_lines[int(prev_blk)]
                                    indexes = [opp_blk_ins_lines.index(start_pnt_name) + (1 if prev_pnt[-1] == sides[0] else 0),
                                               len(opp_blk_ins_lines) if case == 'beg' else opp_blk_ins_lines.index('h'), 1] if start_pnt_name[-1] == sides[1]\
                                        else [opp_blk_ins_lines.index(start_pnt_name) - (1 if prev_pnt[-1] == sides[0] else 0),
                                              0 if case == 'beg' else opp_blk_ins_lines.index('h'), -1]
                                    if case == 'beg':
                                        if i == 0:
                                            count = (len(coil.layers) * (4 if 'block-coil' in geom_coil.type else 2) - int(first_layer)) * 1e3 + 5e2 - abs(indexes[0] - indexes[1])
                                        else:
                                            count = (len(coil.layers) * 2 - int(first_layer)) * 1e3 + 5e2 - abs(indexes[0] - indexes[1])
                                    else:
                                        count += 1 + abs(indexes[0] - indexes[1])
                                    # Create all remaining lines of the current layer block
                                    for line_name in opp_blk_ins_lines[indexes[0]:indexes[1]:indexes[2]]:
                                        if 'block-coil' in geom_coil.type:
                                            if not line_name[-1].isdigit():
                                                ins_group.lines[line_name] = self.occ.addLine(ins_pnt_prev[line_name + 'l'], ins_pnt_prev[line_name + 'h'])
                                                count += 1 if (case == 'beg' and i == 1) or (case == 'end' and i == 0) else -1
                                                ordered_lines[group_nr].append([line_name, count, ins_group.lines[line_name]])
                                        else:
                                            if line_name[-1].isdigit():
                                                ins_group.lines[line_name] = self.occ.addLine(
                                                    ins_pnt_prev[line_name[:line_name.index(start_pnt_name[-1])] + start_pnt_name[-1] + 'h'],
                                                    ins_pnt_prev[line_name[line_name.index(start_pnt_name[-1]) + 1:] + start_pnt_name[-1] + 'l'])
                                            else:
                                                ins_group.lines[line_name] = self.occ.addLine(ins_pnt_prev[line_name + 'l'], ins_pnt_prev[line_name + 'h'])
                                            count += 1 if case == 'beg' else -1  # if start_pnt_name[-1] == sides[1] else 1
                                            ordered_lines[group_nr].append([line_name, count, ins_group.lines[line_name]])
                                    # Create mid layer line
                                    if 'block-coil' in geom_coil.type:
                                        count_rest = -abs(indexes[0] - indexes[1]) if (case == 'beg' and i == 1) or (case == 'end' and i == 0) else 1 + abs(indexes[0] - indexes[1])
                                    else:
                                        count_rest = -abs(indexes[0] - indexes[1]) if case == 'beg' else 1 + abs(indexes[0] - indexes[1])

                                    line_name = 'mid_layer_' + mid_l_name + ('b' if i == 1 else '') + (
                                        '_l' if case == 'beg' else '_h')

                                    gmsh.model.occ.synchronize()
                                    """
                                    The line that connects two layers may overlap with a new (pole) region. This can be avoided by 
                                    modifying the line to be an L shape by adding an intermediate point.
                                    We add the point along the upper half-turn radial direction towards the center.
                                    """
                                    p = ins_pnt[pnt_tag_name]  # point to be extended
                                    linetag = gmsh.model.getAdjacencies(0, ins_pnt[pnt_tag_name])[0][0]  # line to be extended
                                    # find the distance to move the point towards the center
                                    coord1 = gmsh.model.getValue(0, p, [])
                                    coord2 = gmsh.model.getValue(0, ins_pnt_prev[pnt_tag_name_opposite], [])
                                    # this is the
                                    r1 = np.sqrt(coord1[0] ** 2 + coord1[1] ** 2)
                                    r2 = np.sqrt(coord2[0] ** 2 + coord2[1] ** 2)
                                    distance = (r1 - r2) / 2

                                    p1, p2 = [b[1] for b in gmsh.model.getBoundary([(1, linetag)], oriented=True)]
                                    dir_vector = gmsh.model.getValue(0, p1, [])-gmsh.model.getValue(0, p2, [])
                                    unit_vector = dir_vector / np.linalg.norm(dir_vector)
                                    coord = gmsh.model.getValue(0, p, [])
                                    X = self.occ.addPoint(
                                        coord[0] + unit_vector[0] * distance,
                                        coord[1] + unit_vector[1] * distance,
                                        0)
                                    gmsh.model.occ.synchronize()

                                    ins_group.lines[line_name + "_A"] = self.occ.addLine(ins_pnt[pnt_tag_name], X)
                                    ins_group.lines[line_name + "_B"] = self.occ.addLine(X, ins_pnt_prev[pnt_tag_name_opposite])

                                    ordered_lines[group_nr].append(
                                        [line_name+"_A", count + count_rest -1 if case == 'beg' else count + count_rest, ins_group.lines[line_name+"_A"]])
                                    ordered_lines[group_nr].append(
                                        [line_name+"_B", count + count_rest if case == 'beg' else count + count_rest -1, ins_group.lines[line_name+"_B"]])

                                    """ # original code
                                    line_name = 'mid_layer_' + mid_l_name + ('b' if i == 1 else '') + ('_l' if case == 'beg' else '_h')
                                    ins_group.lines[line_name] = self.occ.addLine(ins_pnt[pnt_tag_name], ins_pnt_prev[pnt_tag_name_opposite])
                                    ordered_lines[group_nr].append([line_name, count + count_rest, ins_group.lines[line_name]])
                                    """
                                    break
                                # Create all edges of the first block sticking out completely todo: might have to be extended to multiple blocks
                                if current_blk != first_block and current_blk not in past_blocks:
                                    def __createWedgeInsulation(cnt):
                                        # Create the line connecting the blocks (where a wedge is)
                                        line_name = self.blk_ins_lines[int(current_blk)][
                                            (-1 if start_pnt_name[-1] == 'o' else 1) if case == 'beg'
                                            else (round(len(self.blk_ins_lines[int(current_blk)]) / 2) + (1 if start_pnt_name[-1] == 'o' else -1))]
                                        line_name_prev = self.blk_ins_lines[int(prev_blk)][
                                            (round(len(self.blk_ins_lines[int(prev_blk)]) / 2) + (1 if start_pnt_name[-1] == 'o' else -1)) if case == 'beg'
                                            else (-1 if start_pnt_name[-1] == 'o' else 1)]
                                        # Create corrected center
                                        blk1 = geom_coil.poles[blks_info[prev_blk][0]].layers[
                                            blks_info[prev_blk][1]].windings[blks_info[prev_blk][2]].blocks[int(prev_blk)]
                                        blk2 = geom_coil.poles[blks_info[current_blk][0]].layers[
                                            blks_info[current_blk][1]].windings[blks_info[current_blk][2]].blocks[int(current_blk)]
                                        pnt1 = blk1.half_turns[int(line_name_prev[:-1])].corners.insulated.oH if case == 'beg'\
                                            else blk1.half_turns[int(line_name_prev[:-1])].corners.insulated.oL
                                        pnt2 = blk2.half_turns[int(line_name[:-1])].corners.insulated.oL if case == 'beg'\
                                            else blk2.half_turns[int(line_name[:-1])].corners.insulated.oH
                                        outer_center = Func.corrected_arc_center([aux_coil.bore_center.x, aux_coil.bore_center.y],
                                                                                 [pnt2.x, pnt2.y] if case == 'beg' else [pnt1.x, pnt1.y],
                                                                                 [pnt1.x, pnt1.y] if case == 'beg' else [pnt2.x, pnt2.y])
                                        ins_group.lines[line_name_prev + line_name] =\
                                            self.occ.addCircleArc(ins_pnt_prev[line_name_prev + sides[2]],
                                                                  self.occ.addPoint(outer_center[0], outer_center[1], 0), ins_pnt[line_name + sides[3]])
                                        ordered_lines[group_nr].append([line_name_prev + line_name, cnt, ins_group.lines[line_name_prev + line_name]])

                                    count = int(first_layer) * 1e3 + 5e2 if case == 'end' else (len(coil.layers) * 2 - int(first_layer)) * 1e3 + 5e2
                                    past_blocks.append(current_blk)
                                    indexes = [round(len(self.blk_ins_lines[int(prev_blk)]) / 2) + 1,
                                               len(self.blk_ins_lines[int(prev_blk)])] if str(blks_info[prev_blk][1]) == first_layer\
                                        else [1, round(len(self.blk_ins_lines[int(prev_blk)]) / 2)]
                                    if case == 'beg':
                                        count += 1
                                        __createWedgeInsulation(count)
                                    lines = self.blk_ins_lines[int(prev_blk)][indexes[0]:indexes[1]]
                                    side = 'o' if str(blks_info[prev_blk][1]) == first_layer else 'i'
                                    for line_nr, line_name in enumerate(lines):
                                        skip_count = False
                                        if line_name[-1].isdigit():
                                            try:
                                                ins_group.lines[line_name] =\
                                                    self.occ.addLine(ins_pnt_prev[line_name[line_name.index(start_pnt_name[-1]) + 1:] + start_pnt_name[-1] + 'l'],
                                                                     ins_pnt_prev[line_name[:line_name.index(start_pnt_name[-1])] + start_pnt_name[-1] + 'h'])
                                            except:  # points are too close to each other
                                                skip_count = True
                                                next_line = lines[line_nr + 1]
                                                pnt1, pnt2 = line_name.split(side)
                                                pos = 'first' if next_line[:-1] == pnt1 else 'second'
                                                lines[line_nr + 1] = next_line + (pnt2 + 'l' if pos == 'first' else pnt1 + 'h')
                                        elif line_name[-1] in ['i', 'o']:
                                            ins_group.lines[line_name] = self.occ.addLine(ins_pnt_prev[line_name + 'h'], ins_pnt_prev[line_name + 'l'])
                                        else:
                                            ins_group.lines[line_name] = self.occ.addLine(ins_pnt_prev[line_name[:line_name.index(side)] + side + line_name[-1]],
                                                                                          ins_pnt_prev[line_name[line_name.index(side) + 1:-1] + side + line_name[-1]])
                                        if not skip_count:
                                            count += 1  # if start_pnt_name[-1] == sides[1] else -1
                                            ordered_lines[group_nr].append([line_name, count, ins_group.lines[line_name]])
                                    if case == 'end':
                                        count += 1
                                        __createWedgeInsulation(count)

                # Generate closed loops
                ordered_lines[group_nr].sort(key=lambda x: x[1])
                area_name = str((coil_nr - 1) * len(ins_groups) + group_nr)
                ins_group.areas[area_name] = dM.Area()
                if len(points_angle) == 1:
                    ins_group.areas['inner_loop'] = dM.Area(loop=self.occ.addCurveLoop([ins_group.lines[line] for line in [x[0] for x in ordered_lines[group_nr]]
                                                                                        if 'i' in line and line[0].isdigit() or '_i' in line]))
                    ins_group.areas[area_name].loop = self.occ.addCurveLoop([ins_group.lines[line] for line in [x[0] for x in ordered_lines[group_nr]]
                                                                                 if 'o' in line and line[0].isdigit() or '_o' in line])
                else:
                    ins_group.areas[area_name].loop = self.occ.addCurveLoop([ins_group.lines[line] for line in [x[0] for x in ordered_lines[group_nr]]])

    def constructThinShells_poles(self):
        ts_layer = self.md.geometries.thin_shells.pole_layers
        ts_av_ins_thick = self.md.geometries.thin_shells.ins_thickness.poles

        def _construct_thin_shell_corners_to_line(pnt1, pnt2, pole_line, name):
            # use gmsh to calculate  distance to a line
            coord_a = gmsh.model.getClosestPoint(1, pole_line, coord=(pnt1[0], pnt1[1], 0))[0]
            coord_b = gmsh.model.getClosestPoint(1, pole_line, coord=(pnt2[0], pnt2[1], 0))[0]
            # draw new point at half the distance between iH and coord_a
            new_i = self.occ.addPoint((pnt1[0] + coord_a[0]) / 2, (pnt1[1] + coord_a[1]) / 2, 0)
            new_o = self.occ.addPoint((pnt2[0] + coord_b[0]) / 2, (pnt2[1] + coord_b[1]) / 2, 0)

            ts_layer[name] = dM.Region()

            self.occ.synchronize()
            ts_layer[name].lines['1'] = self.occ.addLine(new_i, new_o)
            self.occ.synchronize()

            cond_name = next(iter(self.data.conductors.keys()))
            other_material = 0.5*(self.data.conductors[cond_name].cable.th_insulation_along_height+self.data.conductors[cond_name].cable.th_insulation_along_width)#todo, better select which one
            # distance -> Average between coord_a and iH and coord_b and oH AND remove the G10 thickness
            ts_av_ins_thick[name] = float(0.5 * (np.sqrt((pnt1[0] - coord_a[0]) ** 2 + (pnt1[1] - coord_a[1]) ** 2) +
                                           np.sqrt((pnt2[0] - coord_b[0]) ** 2 + (pnt2[1] - coord_b[1]) ** 2))) - other_material
            return

        def _find_line_closest_to_points(pnt1, pnt2, line_list_tags):
            """
            Should work for any (pole) geometry. Given the half turn corner points pnt1 = [x1, y1], pnt2 = [x2, y2],
            and a list of pole line tags, we need to select which one is on the opposite side to construct the thin shell line
            thus, we search the closest line(s) to each corner point and then take the intersection of those two sets
            """
            closest_lines = {0: [], 1: []}
            for i, pnt in enumerate([pnt1, pnt2]):
                min_dist = float('inf')
                for line_tag in line_list_tags:
                    tag1, tag2 = gmsh.model.getAdjacencies(1, line_tag)[1]
                    start_pnt = gmsh.model.getValue(0, tag1, [])
                    end_pnt = gmsh.model.getValue(0, tag2, [])
                    v = end_pnt - start_pnt
                    w = pnt - start_pnt
                    c1 = np.dot(w, v)
                    c2 = np.dot(v, v)
                    # avoid extending the line
                    if c1 <= 0:
                        dist = np.linalg.norm(pnt - start_pnt)  # Closest to p1
                    elif c2 <= c1:
                        dist = np.linalg.norm(pnt - end_pnt)  # Closest to p2
                    else:
                        b = c1 / c2
                        Pb = start_pnt + b * v
                        dist = np.linalg.norm(pnt - Pb)

                    if np.isclose(min_dist, dist):
                        closest_lines[i].append(line_tag)  # add to list
                    elif dist < min_dist:
                        min_dist = dist
                        closest_lines[i] = [line_tag]  # overwrite

            # return the intersection of closest lines
            return list(set(closest_lines[0]).intersection(set(closest_lines[1])))[0]  # should be only one line

        def _split_lines_azimuthal_radial(line_tag_list):
            alines = []
            rlines = []
            for tag in line_tag_list:
                pointTags = gmsh.model.getAdjacencies(1, tag)[1] # get tag
                p1 = gmsh.model.getValue(0, pointTags[0], [])
                p2 = gmsh.model.getValue(0, pointTags[1], [])

                dr = np.sqrt(p2[0] ** 2 + p2[1] ** 2) - np.sqrt(p1[0] ** 2 + p1[1] ** 2)
                dt = (np.arctan2(p2[1], p2[0]) - np.arctan2(p1[1], p1[0])) * np.sqrt(p2[0] ** 2 + p2[1] ** 2) ## convert to length
                if np.abs(dt)>np.abs(dr):
                    alines.append(tag)
                else:
                    rlines.append(tag)
            return alines, rlines

        def _wedge_to_pole_lines():
            """
            These lines do not exist, those that already exist contain the G10 insulation so we need more.
            """
            for _, region in self.md.geometries.thin_shells.mid_layers_aux.items(): #those are the g10 layers, we need to duplicate this line to account for the kapton
                # obtain the position of the lines and draw more on top of it
                for name, line_tag in  region.lines.items():
                    name = f"p{name}_r"  # all radial lines
                    ts_layer[name] = dM.Region()

                    point_tag = gmsh.model.getBoundary([(1, line_tag)], oriented=False)
                    p1, p2 = point_tag[0][1], point_tag[1][1]
                    x1, y1, _ = gmsh.model.getValue(0, p1, [])
                    x2, y2, _ = gmsh.model.getValue(0, p2, [])
                    # create new line
                    p1_new = gmsh.model.occ.addPoint(x1, y1, 0.0)
                    p2_new = gmsh.model.occ.addPoint(x2, y2, 0.0)
                    self.occ.synchronize()
                    ts_layer[name].lines['1'] = self.occ.addLine(p1_new, p2_new)
                    self.occ.synchronize()

                    # thickness = distance between the wedge and the pole - G10 thickness
                    # how to approximate this thickness? -> use the same thickness as for the ht 108
                    """
                    cond_name = next(iter(self.data.conductors.keys()))
                    other_material = 0.5 * (
                                self.data.conductors[cond_name].cable.th_insulation_along_height + self.data.conductors[
                            cond_name].cable.th_insulation_along_width)
                    # distance -> Average between coord_a and iH and coord_b and oH AND remove the G10 thickness ?
                    ts_av_ins_thick[name] = ???
                    """
                    ts_av_ins_thick[name] = ts_av_ins_thick['p108_a'] #@emma hardcoded thickness, use the same as for this ht

        max_layer = max(self.geom.coil.coils[1].poles[1].layers.keys())
        # first, the lines connecting hts to the pole
        for coil_nr, coil in self.md.geometries.coil.anticlockwise_order.coils.items(): # coilnr is only 1 here
            for layer_nr, layer in coil.layers.items(): # we need to add radial TS lines for both layers
                for nr, blk_order in enumerate(layer):
                    block = self.geom.coil.coils[coil_nr].poles[blk_order.pole].layers[
                        layer_nr].windings[blk_order.winding].blocks[blk_order.block]
                    ht_list = list(self.md.geometries.coil.coils[coil_nr].poles[blk_order.pole].layers[
                                       layer_nr].windings[blk_order.winding].blocks[
                                       blk_order.block].half_turns.areas.keys())

                    blk_index_next = nr + 1 if nr + 1 < len(layer) else 0
                    block_order_next = layer[blk_index_next]
                    block_next = self.geom.coil.coils[coil_nr].poles[block_order_next.pole].layers[
                        layer_nr].windings[block_order_next.winding].blocks[block_order_next.block]
                    ht_list_next = list(self.md.geometries.coil.coils[coil_nr].poles[block_order_next.pole].layers[
                                            layer_nr].windings[block_order_next.winding].blocks[
                                            block_order_next.block].half_turns.areas.keys())
                    ht_last = int(ht_list[-1])
                    ht_next_first = int(ht_list_next[0])
                    # if winding nr is the same and pole is the same -> pole connection

                    if blk_order.pole == block_order_next.pole and blk_order.winding == block_order_next.winding:
                        # Create radial lines for pole connection
                        pole_lines_a, pole_lines_r = _split_lines_azimuthal_radial(
                            [v for qq in self.md.geometries.poles.quadrants.keys() for v in
                             self.md.geometries.poles.quadrants[qq].lines.values()])
                        # todo maybe this can be speed up if we select the correct quadrant
                        if layer_nr != max_layer:
                            # add azimuthal thin shells at the ht side 'o' (normals radial)
                            # Now we consider all the HT's from one block, this might not hold true in general

                            for ht in map(int, ht_list):
                                oH = [block.half_turns[ht].corners.bare.oH.x,
                                      block.half_turns[ht].corners.bare.oH.y, 0.0]
                                oL = [block.half_turns[ht].corners.bare.oL.x,
                                      block.half_turns[ht].corners.bare.oL.y, 0.0]
                                _construct_thin_shell_corners_to_line(
                                    oH, oL,
                                    _find_line_closest_to_points(oH, oL,  pole_lines_a),
                                    name=f"p{ht}_r")

                            for ht in map(int, ht_list_next):
                                oH = [block_next.half_turns[ht].corners.bare.oH.x,
                                      block_next.half_turns[ht].corners.bare.oH.y, 0.0]
                                oL = [block_next.half_turns[ht].corners.bare.oL.x,
                                      block_next.half_turns[ht].corners.bare.oL.y, 0.0]
                                _construct_thin_shell_corners_to_line(
                                    oH, oL,
                                    _find_line_closest_to_points(oH, oL, pole_lines_a),
                                    name=f"p{ht}_r")

                        iH = [block.half_turns[ht_last].corners.bare.iH.x,
                              block.half_turns[ht_last].corners.bare.iH.y, 0.0]
                        oH = [block.half_turns[ht_last].corners.bare.oH.x,
                              block.half_turns[ht_last].corners.bare.oH.y, 0.0]
                        _construct_thin_shell_corners_to_line(
                            iH, oH,
                            _find_line_closest_to_points(iH, oH, pole_lines_r),
                            name=f"p{ht_last}_a")

                        iL = [block_next.half_turns[ht_next_first].corners.bare.iL.x,
                              block_next.half_turns[ht_next_first].corners.bare.iL.y, 0.0]
                        oL = [block_next.half_turns[ht_next_first].corners.bare.oL.x,
                              block_next.half_turns[ht_next_first].corners.bare.oL.y, 0.0]
                        _construct_thin_shell_corners_to_line(
                            iL, oL,
                            _find_line_closest_to_points(iL, oL, pole_lines_r),
                            name=f"p{ht_next_first}_a")
        # second, the lines connecting wedge to the pole
        _wedge_to_pole_lines()
    def constructAdditionalThinShells(self):
        def _create_lines_ht_alignment(ohx, ohy, olx, oly, ihx, ihy, ilx, ily):
            def __line_circle_intersection(p1, p2):
                x1, y1 = p1
                x2, y2 = p2
                dx = x2 - x1
                dy = y2 - y1

                A = dx**2 + dy**2
                B = 2 * (dx*x1 + dy*y1)
                C = x1**2 + y1**2 - R**2 # R collar is known from outer scope

                disc = B**2 - 4*A*C
                if disc < 0:
                    logger.warning(" No intersection between line and circle.")
                    return []  # no intersection
                else:
                    sqrt_disc = np.sqrt(disc)
                    t1 = (-B + sqrt_disc) / (2*A)
                    t2 = (-B - sqrt_disc) / (2*A)
                    return [(x1 + t1*dx, y1 + t1*dy),
                            (x1 + t2*dx, y1 + t2*dy)]

            mid_bare_o = np.mean([[ohx, ohy], [olx, oly]], axis=0)
            mid_bare_i = np.mean([[ihx, ihy], [ilx, ily]], axis=0)
            offsets = np.array([[ohx, ohy], [olx, oly]]) - mid_bare_o
            quad = 1 if mid_bare_o[0] >= 0 and mid_bare_o[1] >= 0 else (
                2 if mid_bare_o[0] <= 0 <= mid_bare_o[1] else (3 if mid_bare_o[0] <= 0 and mid_bare_o[1] <= 0 else 4))
            inters = __line_circle_intersection(mid_bare_o, mid_bare_i)
            quadrants = {
                1: lambda x, y: x >= 0 and y >= 0,
                2: lambda x, y: x <= 0 <= y,
                3: lambda x, y: x <= 0 and y <= 0,
                4: lambda x, y: x >= 0 >= y,
            }
            check = quadrants[quad]
            for x, y in inters:
                if check(x, y):  # select the correct intersection based on the quadrant
                    xi, yi = x, y
                    break

            # add a point halfway between (x,y) and (xi, yi)
            dr = float(np.sqrt((xi - mid_bare_o[0]) ** 2 + (yi - mid_bare_o[1]) ** 2))
            new_point_coords = [mid_bare_o[0] + 0.5 * (xi - mid_bare_o[0]), mid_bare_o[1] + 0.5 * (yi - mid_bare_o[1])]
            for offset in offsets:
                point_tag_final = self.occ.addPoint(new_point_coords[0] + offset[0], new_point_coords[1] + offset[1], 0)
            self.occ.synchronize()
            return dr, point_tag_final
        def _embed_points_to_collar_curve():
            def __add_point_in_curve(points, curve_tag):
                return self.occ.fragment([(0, k) for k in points], [(1, curve_tag)], removeObject=True)[0]

            ### First, cut the collar line
            self.occ.synchronize()
            new_tags = {1: [], 2: [], 3: [], 4: []} # tuples
            new_point_tags = {1: [], 2: [], 3: [], 4: []} # only tags
            collar_size = self.data.magnet.mesh.thermal.collar.SizeMin
            for ts_name, ts in self.md.geometries.thin_shells.collar_layers.items():
                for name, line in ts.lines.items():
                    coords = gmsh.model.getValue(1, line, [i[0] for i in gmsh.model.getParametrizationBounds(1, line)])
                    t1 = np.arctan2(coords[0], coords[1])
                    t2 = np.arctan2(coords[3], coords[4])
                    quad = t1 // (np.pi / 2) + 1 if t1 > 0 else 4 + t1 // (np.pi / 2) + 1
                    curve_tag = self.md.geometries.collar.inner_boundary_tags[quad][0]
                    start, end = min(t1 % (np.pi / 2), t2 % (np.pi / 2)), max(t1 % (np.pi / 2),
                                                                              t2 % (np.pi / 2))  # ensure start < end
                    tmp_coords = gmsh.model.getValue(1, line, [i[0] for i in gmsh.model.getParametrizationBounds(1, line)])
                    target_size = collar_size
                    elements = max(1, round(Func.points_distance(tmp_coords[:2], tmp_coords[3:-1]) / target_size))+1
                    if elements%2 == 1: elements += 1
                    para_coords = np.linspace(start, end, elements, endpoint=True)

                    for u in para_coords:
                        if quad == 1 or quad == 3:
                            u = np.pi / 2 - u  ## magic
                        x, y, z = gmsh.model.getValue(1, curve_tag, [u])  # Evaluate point on curve
                        new_point_tags[quad].append(self.occ.addPoint(x, y, z))  # Add point coordinates to the list

            for q in new_point_tags.keys():
                new_tags[q].extend(__add_point_in_curve(new_point_tags[q], self.md.geometries.collar.inner_boundary_tags[q][0]))
            # so for occ the old curve no longer exists, but in the objects the tag is still there

            REMOVED_TAGS = [self.md.geometries.collar.inner_boundary_tags[q][0] for q in new_tags.keys()]

            # update boundary tags
            for quad, taglist in new_tags.items():
                curvelist = [tag[1] for tag in taglist if tag[0]==1 ] # select the curves only
                self.md.geometries.collar.inner_boundary_tags[quad] = curvelist  # replace
                for k, new_tag in enumerate(self.md.geometries.collar.inner_boundary_tags[quad]):
                    self.md.geometries.collar.quadrants[quad].lines[str(k)] = new_tag ## adding new lines

                # REDEFINE THE CURVELOOP
                loop_list = []
                tmpdict = copy.deepcopy(self.md.geometries.collar.quadrants[quad].lines)
                for tag_name, tag in tmpdict.items():
                    if tag in self.md.geometries.collar.cooling_tags: # skip holes
                        continue
                    if tag in REMOVED_TAGS:
                        # remove from dictionary
                        del self.md.geometries.collar.quadrants[quad].lines[tag_name]
                        continue
                    loop_list.append(tag)
                self.occ.synchronize()

                for area in self.md.geometries.collar.quadrants[quad].areas:
                    if area.startswith('arc') and not area.startswith('arch'): #collar region, not the holes
                        self.md.geometries.collar.quadrants[quad].areas[area] = dM.Area(
                            loop=self.occ.addCurveLoop(loop_list))

            # Cut the pole lines
            """
            idea, loop over the thin shell lines, then draw line from the HT corner to the line ends, then intersect it with the pole curve 
            just find intersection and select the shortest one ?        

            # not implemented, maybe not necessary
            """
            for quad in [1, 2, 3, 4]:
                # additionally add the pole area back
                for area in self.md.geometries.poles.quadrants[quad].areas:
                    if area.startswith('arp'):
                        self.md.geometries.poles.quadrants[quad].areas[area] = dM.Area(
                            loop=self.occ.addCurveLoop(list(self.md.geometries.poles.quadrants[quad].lines.values())))

            self.occ.synchronize()

        # point still needs to be added
        ts_layer = self.md.geometries.thin_shells.collar_layers
        ts_av_ins_thick = self.md.geometries.thin_shells.ins_thickness.collar
        collar_tag_dict = self.md.geometries.collar.inner_boundary_tags
        enforce_TSA_mapping_collar = self.data.magnet.mesh.thermal.collar.Enforce_TSA_mapping  # if True, cut the collar curve into segments, otherwise use the whole curve

        center = self.occ.addPoint(0, 0, 0)
        collar_x, collar_y, _ = gmsh.model.getValue(1, collar_tag_dict[1][0], [0])
        R = np.sqrt(collar_x ** 2 + collar_y ** 2)  # radius of collar curve

        alignment = ['radial', 'ht'][1] # pick ht alignment

        # COLLAR
        for pid, pole in self.geom.coil.coils[1].poles.items():
            layer_num = max(pole.layers.keys()) # outside layer
            for wid, winding in pole.layers[layer_num].windings.items():
                for block_idx in winding.blocks.keys():
                    block = winding.blocks[block_idx]
                    ht_nr_area = list(self.md.geometries.coil.coils[1].poles[pid].layers[layer_num].windings[wid].blocks[block_idx].half_turns.areas.keys())
                    i = 0
                    for ht_nr, ht in block.half_turns.items(): #ht_idx is not the same as number
                        ht_old = ht_nr_area[i]
                        i+=1
                        dr = 0.
                        if alignment == 'radial':
                            for (x, y), (x1, y1) in zip([[ht.corners.bare.oH.x, ht.corners.bare.oH.y], [ht.corners.bare.oL.x, ht.corners.bare.oL.y]],
                                                        [[ht.corners.bare.iH.x, ht.corners.bare.iH.y], [ht.corners.bare.iL.x, ht.corners.bare.iL.y]]): # uses the bare coordinates of the HT
                                t = np.arctan2(y, x)
                                quad = t // (np.pi / 2) + 1 if t > 0 else 4 + t // (np.pi / 2) + 1
                                collar_idx = collar_tag_dict[quad][0]  # get the (debug: ONE) collar curve tag for the quadrant

                                dr_prev = dr

                                dummy = self.occ.addPoint(x, y, 0)
                                dr = self.occ.get_distance(0, dummy,  1, collar_idx)[0]
                                self.occ.synchronize()
                                self.occ.remove([(0, dummy)])
                                point_tag_final = self.occ.addPoint(x + 0.5 * dr * np.cos(t), y + 0.5 * dr * np.sin(t), 0)

                        elif alignment == 'ht': # distance to the next half turn (more relevant for coil to coil distances)
                            dr, point_tag_final = _create_lines_ht_alignment(ohx = ht.corners.bare.oH.x, ohy=ht.corners.bare.oH.y,
                                                                                 olx = ht.corners.bare.oL.x, oly=ht.corners.bare.oL.y,
                                                                                 ihx = ht.corners.bare.iH.x, ihy=ht.corners.bare.iH.y,
                                                                                 ilx = ht.corners.bare.iL.x, ily=ht.corners.bare.iL.y)
                        # save the line
                        name = f'{ht_nr}_x'
                        ts_layer[name] = dM.Region()
                        self.occ.synchronize()
                        ts_layer[name].lines['1'] = self.occ.addLine(point_tag_final-1, point_tag_final)
                        cond_name = next(iter(self.data.conductors.keys()))
                        if alignment == 'radial':
                            ts_av_ins_thick[name] = 0.5*(dr+dr_prev) - self.data.conductors[cond_name].cable.th_insulation_along_width # approx thickness, average - insulation
                        elif alignment == 'ht':
                            ts_av_ins_thick[name] = dr - self.data.conductors[cond_name].cable.th_insulation_along_width
        self.occ.synchronize()

        # WEDGES
        if self.data.magnet.geometry.thermal.with_wedges:
            for wedge_idx, wedge in self.md.geometries.wedges.coils[1].layers[max(self.md.geometries.wedges.coils[1].layers.keys())].wedges.items():
                    dr=0.
                    if alignment == 'radial':
                        raise NotImplementedError("Wedge radial alignment not implemented")

                    elif alignment == 'ht':  # distance to the next half turn (more relevant for coil to coil distances)
                        ohx, ohy, _ = gmsh.model.getValue(0, wedge.points['oh'], [])
                        olx, oly, _ = gmsh.model.getValue(0, wedge.points['ol'], [])
                        ihx, ihy, _ = gmsh.model.getValue(0, wedge.points['ih'], [])
                        ilx, ily, _ = gmsh.model.getValue(0, wedge.points['il'], [])
                        dr, point_tag_final = _create_lines_ht_alignment(ohx=ohx, ohy=ohy, olx=olx, oly=oly,
                                                                             ihx=ihx, ihy=ihy, ilx=ilx, ily=ily)

                    # find the smallest thickness
                    dr_b = 0.0
                    for x, y in [[ohx, ohy],
                                 [olx, oly]]:
                        dummy = self.occ.addPoint(x, y, 0)
                        dr_a = dr_b
                        t = np.arctan2(y, x)
                        quad = t // (np.pi / 2) + 1 if t > 0 else 4 + t // (np.pi / 2) + 1
                        collar_idx = collar_tag_dict[quad][0]
                        dr_b = self.occ.get_distance(0, dummy, 1, collar_idx)[0]
                        self.occ.remove([(0, dummy)])

                    # save line
                    name = f'w{wedge_idx}_x'
                    ts_layer[name] = dM.Region()
                    ts_layer[name].lines['1'] = self.occ.addLine(point_tag_final - 1, point_tag_final) # make index line trivial (no distinction)

                    cond_name = next(iter(self.data.conductors.keys()))
                    #### ts_av_ins_thick[name] = dr - self.data.conductors[cond_name].cable.th_insulation_along_width
                    # This overshoots the thickness. The wedges are curved and the center between the corners (straight line) is further away from the collar than the curved wedge boundary.
                    # Maybe one could use gmsh to obtain the distance between the outer curve and the collar, but this should be close to taking the minimum distance of the cornerpoints as both curves are
                    # circle segments of (approximately) two concentric circles around the centre

                    logger = logging.getLogger('FiQuS')
                    logger.warning("Using alternative wedge insulation thickness approximation ")
                    ts_av_ins_thick[name] = min(dr_a,dr_b)- self.data.conductors[cond_name].cable.th_insulation_along_width  # approx thickness, average - insulation

        # POLES
        if 'poles' in self.data.magnet.geometry.thermal.areas:
            # generate additional thin shell lines
            self.constructThinShells_poles()

        #gmsh.fltk.run() constructed correctly

        if enforce_TSA_mapping_collar:
            self.occ.synchronize()
            _embed_points_to_collar_curve() ## both coils and wedges

        self.occ.remove([(0, center)]) # remove center point
        self.occ.synchronize()
    def constructThinShells(self, with_wedges):
        # default
        ins_th = self.md.geometries.thin_shells.ins_thickness
        mid_pole_ts = self.md.geometries.thin_shells.mid_poles
        mid_winding_ts = self.md.geometries.thin_shells.mid_windings
        mid_turn_ts = self.md.geometries.thin_shells.mid_turn_blocks
        # not default
        mid_layer_ts = self.md.geometries.thin_shells.mid_layers_ht_to_ht
        mid_layer_ts_aux = self.md.geometries.thin_shells.mid_layers_aux

        # Create mid-pole and mid-turn thin shells
        for coil_nr, coil in self.md.geometries.coil.anticlockwise_order.coils.items():
            for layer_nr, layer in coil.layers.items():
                for nr, blk_order in enumerate(layer):
                    block = self.geom.coil.coils[coil_nr].poles[blk_order.pole].layers[
                        layer_nr].windings[blk_order.winding].blocks[blk_order.block]
                    ht_list = list(self.md.geometries.coil.coils[coil_nr].poles[blk_order.pole].layers[
                                       layer_nr].windings[blk_order.winding].blocks[blk_order.block].half_turns.areas.keys())
                    # Create mid-pole and mid-winding thin shells
                    blk_index_next = nr + 1 if nr + 1 < len(layer) else 0
                    block_order_next = layer[blk_index_next]
                    block_next = self.geom.coil.coils[coil_nr].poles[block_order_next.pole].layers[
                        layer_nr].windings[block_order_next.winding].blocks[block_order_next.block]
                    ht_list_next = list(self.md.geometries.coil.coils[coil_nr].poles[block_order_next.pole].layers[
                                            layer_nr].windings[block_order_next.winding].blocks[block_order_next.block].half_turns.areas.keys())
                    ht_last = int(ht_list[-1])
                    ht_next_first = int(ht_list_next[0])
                    iH = [block.half_turns[ht_last].corners.bare.iH.x, block.half_turns[ht_last].corners.bare.iH.y]
                    iL = [block_next.half_turns[ht_next_first].corners.bare.iL.x, block_next.half_turns[ht_next_first].corners.bare.iL.y]
                    oH = [block.half_turns[ht_last].corners.bare.oH.x, block.half_turns[ht_last].corners.bare.oH.y]
                    oL = [block_next.half_turns[ht_next_first].corners.bare.oL.x, block_next.half_turns[ht_next_first].corners.bare.oL.y]
                    ts_name = str(blk_order.block) + '_' + str(block_order_next.block)

                    for ts, th, condition in zip([mid_pole_ts, mid_winding_ts], [ins_th.mid_pole, ins_th.mid_winding],
                                                 # ['_ly' + str(layer_nr), '_wd' + str(blk_order.winding) + '_wd' + str(block_order_next.winding)],
                                                 [self.geom.coil.coils[coil_nr].type == 'cos-theta' and block_order_next.pole != blk_order.pole,
                                                  (not with_wedges or not self.geom.wedges) and self.geom.coil.coils[coil_nr].type in
                                                  ['cos-theta', 'common-block-coil'] and block_order_next.pole == blk_order.pole and block_order_next.winding != blk_order.winding]):
                        if condition:
                            ts[ts_name] = dM.Region()
                            ts[ts_name].points['i'] = self.occ.addPoint((iH[0] + iL[0]) / 2, (iH[1] + iL[1]) / 2, 0)
                            ts[ts_name].points['o'] = self.occ.addPoint((oH[0] + oL[0]) / 2, (oH[1] + oL[1]) / 2, 0)
                            ts[ts_name].lines[str(ht_last) + '_' + str(ht_next_first)] =\
                                self.occ.addLine(ts[ts_name].points['i'], ts[ts_name].points['o'])
                            # Get insulation thickness
                            th[ts_name] = Func.sig_dig((Func.points_distance(iH, iL) + Func.points_distance(oH, oL)) / 2)
                            # if 'cl' + str(coil_nr) + th_name not in th:
                            #     th['cl' + str(coil_nr) + th_name] = float((Func.points_distance(iH, iL) + Func.points_distance(oH, oL)) / 2)
                    # Create mid-turn thin shells
                    mid_turn_ts[str(blk_order.block)] = dM.Region()
                    ts = mid_turn_ts[str(blk_order.block)]
                    for nr_ht, ht in enumerate(ht_list[:-1]):
                        line_name = ht + '_' + ht_list[nr_ht + 1]
                        current_ht = block.half_turns[int(ht)].corners.bare
                        next_ht = block.half_turns[int(ht_list[nr_ht + 1])].corners.bare
                        mid_inner = [(current_ht.iH.x + next_ht.iL.x) / 2, (current_ht.iH.y + next_ht.iL.y) / 2]
                        mid_outer = [(current_ht.oH.x + next_ht.oL.x) / 2, (current_ht.oH.y + next_ht.oL.y) / 2]
                        mid_length = Func.points_distance(mid_inner, mid_outer)
                        mid_line = Func.line_through_two_points(mid_inner, mid_outer)
                        points = {'inner': list, 'outer': list}
                        for case, current_h, current_l, next_h, next_l, mid_point in zip(
                                ['inner', 'outer'], [current_ht.iH, current_ht.oH], [current_ht.iL, current_ht.oL],
                                [next_ht.iH, next_ht.oH], [next_ht.iL, next_ht.oL], [mid_outer, mid_inner]):
                            current_line = Func.line_through_two_points([current_h.x, current_h.y], [current_l.x, current_l.y])
                            next_line = Func.line_through_two_points([next_h.x, next_h.y], [next_l.x, next_l.y])
                            current_intersect = Func.intersection_between_two_lines(mid_line, current_line)
                            next_intersect = Func.intersection_between_two_lines(mid_line, next_line)
                            points[case] = current_intersect if Func.points_distance(
                                current_intersect, mid_point) < mid_length else next_intersect
                        ts.points[line_name + '_i'] = self.occ.addPoint(points['inner'][0], points['inner'][1], 0)
                        ts.points[line_name + '_o'] = self.occ.addPoint(points['outer'][0], points['outer'][1], 0)
                        ts.lines[line_name] = self.occ.addLine(ts.points[line_name + '_i'], ts.points[line_name + '_o'])

        # Create mid-layer thin shells
        block_coil_mid_pole_list = [str(blks[0].block) + '_' + str(blks[1].block) for coil_nr, coil in self.block_coil_mid_pole_blks.items() for blks in coil]
        for ts_name, ts in mid_layer_ts.items():
            # Order mid-layer thin shell points according to their angle with respect to the x-axis to generate lines
            blk1, blk2 = ts_name.split('_')
            max_angle = max(ts.point_angles.values())
            max_diff = max_angle - min(ts.point_angles.values())
            if max_diff > np.pi:
                for pnt_name, angle in ts.point_angles.items():
                    if angle < max_diff / 2:
                        ts.point_angles[pnt_name] = angle + max_angle
            ordered_pnts = [[pnt_name, ts.point_angles[pnt_name], pnt] for pnt_name, pnt in ts.mid_layers.points.items()]
            ordered_pnts.sort(key=lambda x: x[1])
            for nr, pnt in enumerate(ordered_pnts[:-1]):
                pnt_current = pnt[0]
                pnt_next = ordered_pnts[nr + 1][0]
                if ((pnt_current[-1] == 'l' and pnt_next[-1] == 'h' and ts_name not in block_coil_mid_pole_list) or     # cos-theta
                        (ts_name in block_coil_mid_pole_list and
                         ((pnt_current[-1] == pnt_next[-1] == 'h' and block_coil_mid_pole_list.index(ts_name) == 0) or  # assumes a dipole block-coil
                          (pnt_current[-1] == pnt_next[-1] == 'l' and block_coil_mid_pole_list.index(ts_name) == 1) or  # assumes a dipole block-coil
                          (pnt_current[:-1] == pnt_next[:-1])))):
                    if pnt_current[:-1] == pnt_next[:-1]:
                        relevant_blk = blk2 if int(pnt_current[:-1]) in ts.half_turn_lists[blk1] else blk1
                        if nr > 0:
                            iter_nr = nr - 1
                            while int(ordered_pnts[iter_nr][0][:-1]) not in ts.half_turn_lists[relevant_blk]: iter_nr -= 1
                            line_name = ordered_pnts[iter_nr][0][:-1] + '_' + pnt_current[:-1]
                        else:
                            if len(ordered_pnts) == 2:  # todo: get right ht from relevant_blk for 1-ht blocks
                                line_name = pnt_current[:-1] + '_' + str(ts.half_turn_lists[relevant_blk][0])
                            else:
                                iter_nr = nr + 1
                                while int(ordered_pnts[iter_nr][0][:-1]) not in ts.half_turn_lists[relevant_blk]: iter_nr += 1
                                line_name = pnt_current[:-1] + '_' + ordered_pnts[iter_nr][0][:-1]
                    else:
                        line_name = pnt_current[:-1] + '_' + pnt_next[:-1]

                    # TODO look into why this exception handling is needed for SMC magnet with ESC coils - the following meshing stage does not work
                    try:
                        tag = self.occ.addLine(pnt[2], ordered_pnts[nr + 1][2])
                        ts.mid_layers.lines[line_name] = tag
                    except Exception as e:
                        ts.mid_layers.lines[line_name] = tag    # this will be the last tag, i.e. from previously created line
                        x1, y1, z1 = gmsh.model.occ.getBoundingBox(1, pnt[2])[:3]
                        x2, y2, z2 = gmsh.model.occ.getBoundingBox(1, ordered_pnts[nr + 1][2])[:3]
                        distance = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2 + (z2 - z1) ** 2)
                        logger.info(f"{e} {line_name} between point tags {pnt[2], ordered_pnts[nr + 1][2]} and distance between points {distance}")

            if ts_name in mid_layer_ts_aux:
                aux_pnt = list(mid_layer_ts_aux[ts_name].points.keys())[0]
                other_pnt = ordered_pnts[0 if aux_pnt[-1] == 'l' else -1]
                other_pnt_coord = gmsh.model.getValue(0, other_pnt[2], [])[:2]  # needs to be a new point
                mid_layer_ts_aux[ts_name].points[other_pnt[0]] = self.occ.addPoint(other_pnt_coord[0], other_pnt_coord[1], 0)
                line_name = list(mid_layer_ts_aux[ts_name].lines.keys())[0]
                try:
                    mid_layer_ts_aux[ts_name].lines[line_name] = \
                        self.occ.addLine(mid_layer_ts_aux[ts_name].points[aux_pnt], mid_layer_ts_aux[ts_name].points[other_pnt[0]])
                except:
                    mid_layer_ts_aux[ts_name].lines.pop(line_name)

        # Create wedge-to-block and block-to-wedge lines
        for wdg_ts in [self.md.geometries.thin_shells.mid_layers_wdg_to_ht, self.md.geometries.thin_shells.mid_layers_ht_to_wdg]:
            for ts_name, ts in wdg_ts.items():
                pnt_list = list(ts.points.keys())
                for nr, pnt in enumerate(pnt_list[:-1]):
                    if pnt[-1] == 'l' and pnt_list[nr + 1][-1] == 'h':
                        ts.lines[pnt[:-1] + '_' + pnt_list[nr + 1][:-1]] = self.occ.addLine(ts.points[pnt], ts.points[pnt_list[nr + 1]])
                if ts_name in mid_layer_ts_aux:
                    aux_pnt = list(mid_layer_ts_aux[ts_name].points.keys())[
                            1 if list(mid_layer_ts_aux[ts_name].points.keys()).index('center') == 0 else 0]
                    other_pnt = pnt_list[0 if aux_pnt[-1] == 'l' else -1]
                    other_pnt_coord = gmsh.model.getValue(0, ts.points[other_pnt], [])[:2]  # needs to be a new point
                    mid_layer_ts_aux[ts_name].points[other_pnt] = self.occ.addPoint(other_pnt_coord[0], other_pnt_coord[1], 0)
                    line_name = list(mid_layer_ts_aux[ts_name].lines.keys())[0]
                    mid_layer_ts_aux[ts_name].lines[line_name] = self.occ.addCircleArc(
                        mid_layer_ts_aux[ts_name].points[aux_pnt], mid_layer_ts_aux[ts_name].points['center'], mid_layer_ts_aux[ts_name].points[other_pnt])

        # Create wedge-to-wedge lines
        for ts_nr, ts in self.md.geometries.thin_shells.mid_layers_wdg_to_wdg.items():
            ts.lines[ts_nr] = self.occ.addCircleArc(ts.points['beg'], ts.points['center'], ts.points[list(ts.points.keys())[-1]])

        # Create mid wedge-turn lines
        mid_turn_ts = self.md.geometries.thin_shells.mid_wedge_turn
        for ts_nr, ts in mid_turn_ts.items():
            line_name = list(ts.points.keys())[0][:-2]
            ts.lines[line_name] = self.occ.addLine(ts.points[line_name + '_i'], ts.points[line_name + '_o'])

        # Get insulation thickness
        for coil_nr, coil in self.md.geometries.coil.anticlockwise_order.coils.items():
            geom_coil = self.geom.coil.coils[coil_nr]
            # Get block-coil mid-pole thickness
            if coil_nr in self.block_coil_mid_pole_blks:
                for blk_orders in self.block_coil_mid_pole_blks[coil_nr]:
                    block_y = geom_coil.poles[blk_orders[0].pole].layers[1].windings[blk_orders[0].winding].blocks[blk_orders[0].block].block_corners.iH.y
                    block_next_y = geom_coil.poles[blk_orders[1].pole].layers[1].windings[blk_orders[1].winding].blocks[blk_orders[1].block].block_corners.iH.y
                    ins_th.mid_layer[str(blk_orders[0].block) + '_' + str(blk_orders[1].block)] = Func.sig_dig(abs(block_y - block_next_y))
            # Get mid-layer thickness by intersecting the line passing through i-o of the ht of one side with the line passing through l-h of the ht of the opposite side
            for layer_nr, layer in coil.layers.items():
                for blk_order in layer:
                    for ts_name, ts in mid_layer_ts.items():
                        blk1, blk2 = ts_name.split('_')
                        if blk1 == str(blk_order.block) and ts_name not in block_coil_mid_pole_list:
                            block = geom_coil.poles[blk_order.pole].layers[layer_nr].windings[blk_order.winding].blocks[blk_order.block]
                            if layer_nr < len(coil.layers):
                                for blk_order_next in coil.layers[layer_nr + 1]:
                                    if blk_order_next.block == int(blk2):
                                        block_next = geom_coil.poles[blk_order_next.pole].layers[layer_nr + 1].windings[blk_order_next.winding].blocks[int(blk2)]
                                        break
                            else:
                                for blk_order_next in self.md.geometries.coil.anticlockwise_order.coils[coil_nr + 1].layers[1]:
                                    if blk_order_next.block == int(blk2):
                                        block_next = self.geom.coil.coils[coil_nr + 1].poles[blk_order_next.pole].layers[1].windings[blk_order_next.winding].blocks[int(blk2)]
                                        break
                            distances = []
                            lines = list(ts.mid_layers.lines.keys())
                            for line_name in [lines[0], lines[-1]]:
                                ht_1, ht_2 = int(line_name[:line_name.index('_')]), int(line_name[line_name.index('_') + 1:])
                                ht_char = {'low_p': ht_1, 'high_p': ht_2,
                                           'current': ht_1 if ht_1 in ts.half_turn_lists[blk1] else ht_2,
                                           'next':  ht_2 if ht_1 in ts.half_turn_lists[blk1] else ht_1}
                                hts = {'current': block.half_turns[ht_char['current']].corners.bare,
                                       'next': block_next.half_turns[ht_char['next']].corners.bare}
                                hts_p = {'low_p': [hts['current'].oL, hts['current'].iL] if ht_char['low_p'] == ht_char['current'] else [hts['next'].iL, hts['next'].oL],
                                         'high_p': [hts['current'].oH, hts['current'].iH] if ht_char['high_p'] == ht_char['current'] else [hts['next'].iH, hts['next'].oH],
                                         'low_p_opp': [hts['next'].iL, hts['next'].iH] if ht_char['low_p'] == ht_char['current'] else [hts['current'].oL, hts['current'].oH],
                                         'high_p_opp': [hts['next'].iL, hts['next'].iH] if ht_char['high_p'] == ht_char['current'] else [hts['current'].oL, hts['current'].oH]}
                                low_line = Func.line_through_two_points([hts_p['low_p'][0].x, hts_p['low_p'][0].y],
                                                                        [hts_p['low_p'][1].x, hts_p['low_p'][1].y])
                                high_line = Func.line_through_two_points([hts_p['high_p'][0].x, hts_p['high_p'][0].y],
                                                                         [hts_p['high_p'][1].x, hts_p['high_p'][1].y])
                                distances.extend([Func.points_distance([hts_p['low_p'][0].x, hts_p['low_p'][0].y], Func.intersection_between_two_lines(
                                    low_line, Func.line_through_two_points([hts_p['low_p_opp'][0].x, hts_p['low_p_opp'][0].y], [hts_p['low_p_opp'][1].x, hts_p['low_p_opp'][1].y]))),
                                                  Func.points_distance([hts_p['high_p'][0].x, hts_p['high_p'][0].y], Func.intersection_between_two_lines(
                                    high_line, Func.line_through_two_points([hts_p['high_p_opp'][0].x, hts_p['high_p_opp'][0].y], [hts_p['high_p_opp'][1].x, hts_p['high_p_opp'][1].y])))])
                            ins_th.mid_layer[ts_name] = Func.sig_dig(min(distances))
                    for ts_type, wdg_ts in enumerate([self.md.geometries.thin_shells.mid_layers_wdg_to_ht, self.md.geometries.thin_shells.mid_layers_ht_to_wdg]):
                        for ts_name, ts in wdg_ts.items():
                            wdg, blk = ts_name.split('_')
                            if blk == str(blk_order.block):
                                block = geom_coil.poles[blk_order.pole].layers[layer_nr].windings[blk_order.winding].blocks[blk_order.block]
                                wedge = self.md.geometries.wedges.coils[coil_nr].layers[layer_nr + (1 if ts_type == 1 else -1)].wedges[int(wdg[1:])]
                                pnt_il = gmsh.model.getValue(0, wedge.points['il'], [])[:2]
                                pnt_ol = gmsh.model.getValue(0, wedge.points['ol'], [])[:2]
                                pnt_ih = gmsh.model.getValue(0, wedge.points['ih'], [])[:2]
                                pnt_oh = gmsh.model.getValue(0, wedge.points['oh'], [])[:2]
                                low_line = Func.line_through_two_points(pnt_il, pnt_ol)
                                high_line = Func.line_through_two_points(pnt_ih, pnt_oh)
                                el1_l, el2_l = list(ts.lines.keys())[0].split('_')
                                ht_l = block.half_turns[int(el1_l) if el2_l == wdg else int(el2_l)].corners.bare
                                el1_h, el2_h = list(ts.lines.keys())[-1].split('_')
                                ht_h = block.half_turns[int(el1_h) if el2_h == wdg else int(el2_h)].corners.bare
                                opp_line_l = Func.line_through_two_points([ht_l.iL.x, ht_l.iL.y], [ht_l.iH.x, ht_l.iH.y]) if ts_type == 0\
                                    else Func.line_through_two_points([ht_l.oL.x, ht_l.oL.y], [ht_l.oH.x, ht_l.oH.y])
                                opp_line_h = Func.line_through_two_points([ht_h.iL.x, ht_h.iL.y], [ht_h.iH.x, ht_h.iH.y]) if ts_type == 0 \
                                    else Func.line_through_two_points([ht_h.oL.x, ht_h.oL.y], [ht_h.oH.x, ht_h.oH.y])
                                ins_th.mid_layer[ts_name] = Func.sig_dig(
                                    (Func.points_distance(pnt_ol if ts_type == 0 else pnt_il, Func.intersection_between_two_lines(low_line, opp_line_l)) + 
                                     Func.points_distance(pnt_oh if ts_type == 0 else pnt_ih, Func.intersection_between_two_lines(high_line, opp_line_h))) / 2)

        for coil_nr, coil in self.md.geometries.wedges.coils.items():
            # Get mid-layer thickness by intersecting the line passing through i-o of the wdg of one side with the line passing through l-h of the wdg of the opposite side
            for layer_nr, layer in coil.layers.items():
                for wedge_nr, wedge in layer.wedges.items():
                    for ts_name, ts in self.md.geometries.thin_shells.mid_layers_wdg_to_wdg.items():
                        wdg1, wdg2 = ts_name[1:ts_name.index('_')], ts_name[ts_name.index('_') + 2:]
                        if wdg1 == str(wedge_nr):
                            wedge_next = self.md.geometries.wedges.coils[coil_nr].layers[layer_nr + 1].wedges[int(wdg2)]
                            # pnt_il_next = gmsh.model.getValue(0, wedge_next.points['il'], [])[:2]
                            # pnt_ih_next = gmsh.model.getValue(0, wedge_next.points['ih'], [])[:2]
                            pnt_il = gmsh.model.getValue(0, wedge.points['il'], [])[:2]
                            pnt_ol = gmsh.model.getValue(0, wedge.points['ol'], [])[:2]
                            pnt_ih = gmsh.model.getValue(0, wedge.points['ih'], [])[:2]
                            pnt_oh = gmsh.model.getValue(0, wedge.points['oh'], [])[:2]
                            low_line = Func.line_through_two_points(pnt_il, pnt_ol)
                            high_line = Func.line_through_two_points(pnt_ih, pnt_oh)
                            opp_line = Func.line_through_two_points(gmsh.model.getValue(0, wedge_next.points['il'], [])[:2],
                                                                    gmsh.model.getValue(0, wedge_next.points['ih'], [])[:2])
                            ins_th.mid_layer[ts_name] = Func.sig_dig(
                                (Func.points_distance(pnt_ol, Func.intersection_between_two_lines(low_line, opp_line)) +
                                 Func.points_distance(pnt_oh, Func.intersection_between_two_lines(high_line, opp_line))) / 2)

    def buildDomains(self, run_type, symmetry):
        """
            Generates plane surfaces from the curve loops
        """
        iron = self.geom.iron
        gm = self.md.geometries
        geometry_setting = self.data.magnet.geometry.electromagnetics if run_type == 'EM' \
            else self.data.magnet.geometry.thermal

        with_wedges = geometry_setting.with_wedges

        inv_nc = {v: k for k, v in self.nc.items()} #invert naming convention
        for a in geometry_setting.areas: # a in ['iron_yoke', 'collar', ...]:
            for quadrant, qq in getattr(gm, a).quadrants.items():
                for area_name, area in qq.areas.items():
                    identifier = next((k for k in self.inv_nc.keys() if (k in area_name[2:])), None)#re.sub(r'\d+', '',area_name[2:])
                    if a == inv_nc.get(identifier, None): # ensure it is part of the iron yoke or collar (iron, collar)
                        build = True
                        loops = [area.loop]
                        for hole_key, hole in iron.hyper_holes.items():
                            if area_name == hole.areas[1]:
                                loops.append(qq.areas[hole.areas[0]].loop)
                            elif area_name == hole.areas[0]: #skip holes
                                area.surface = self.occ.addPlaneSurface(loops) # also build the holes. An existing curveloop without area is very annoying
                                build = False
                        if build:
                            area.surface = self.occ.addPlaneSurface(loops)
                            getattr(self.md.domains.groups_entities, a)[iron.hyper_areas[area_name].material].append(area.surface) ## save the material

        # Build coil domains
        for coil_nr, coil in gm.coil.coils.items():
            for pole_nr, pole in coil.poles.items():
                for layer_nr, layer in pole.layers.items():
                    for winding_nr, winding in layer.windings.items():
                        for block_key, block in winding.blocks.items():
                            for area_name, area in block.half_turns.areas.items():
                                area.surface = self.occ.addPlaneSurface([area.loop])

        # Build wedges domains
        if with_wedges:
            for coil_nr, coil in gm.wedges.coils.items():
                for layer_nr, layer in coil.layers.items():
                    for wedge_nr, wedge in layer.wedges.items():
                        wedge.areas[str(wedge_nr)].surface = self.occ.addPlaneSurface([wedge.areas[str(wedge_nr)].loop])

        # Build insulation domains
        if run_type == 'TH' and not geometry_setting.use_TSA:
            for coil_nr, coil in gm.insulation.coils.items():
                for group_nr, group in coil.group.items():
                    holes = []
                    for blk in group.blocks:
                        holes.extend([ht.loop for ht_nr, ht in gm.coil.coils[
                            coil_nr].poles[blk[0]].layers[blk[1]].windings[blk[2]].blocks[blk[3]].half_turns.areas.items()])
                    for wdg in group.wedges:
                        holes.extend([wedge.loop for wedge_nr, wedge in gm.wedges.coils[
                            coil_nr].layers[wdg[0]].wedges[wdg[1]].areas.items()])
                    if len(group.ins.areas) == 1:
                        for area_name, area in group.ins.areas.items():
                            area.surface = self.occ.addPlaneSurface([area.loop] + holes)
                    else:
                        for area_name, area in group.ins.areas.items():
                            if area_name.isdigit():
                                area.surface = self.occ.addPlaneSurface([area.loop] + holes + [group.ins.areas['inner_loop'].loop])

        # Create and build air far field
        if run_type == 'EM':
            if 'iron_yoke' in geometry_setting.areas:
                for i in iron.key_points:
                    gm.iron_yoke.max_radius = max(gm.iron_yoke.max_radius, max(iron.key_points[i].x, iron.key_points[i].y)) # this also contains other regions, e.g. collar but this has no effect
                greatest_radius = gm.iron_yoke.max_radius
            else:  # no iron yoke data available
                for coil_nr, coil in self.geom.coil.coils.items():
                    for pole_nr, pole in coil.poles.items():
                        first_winding = list(pole.layers[len(pole.layers)].windings.keys())[0]
                        first_block = list(pole.layers[len(pole.layers)].windings[first_winding].blocks)[0]
                        gm.coil.max_radius = max(abs(pole.layers[len(pole.layers)].windings[first_winding].blocks[first_block].block_corners.oL.x),
                                                 abs(pole.layers[len(pole.layers)].windings[first_winding].blocks[first_block].block_corners.oL.y),
                                                 gm.coil.max_radius)
                greatest_radius = gm.coil.max_radius
            radius_in = greatest_radius * (2.5 if 'iron_yoke' in geometry_setting.areas else 6)
            radius_out = greatest_radius * (3.2 if 'iron_yoke' in geometry_setting.areas else 8)
            air_inf_center_x, air_inf_center_y = 0, 0
            for coil_nr, coil in self.md.geometries.coil.coils.items():
                air_inf_center_x += coil.bore_center.x
                air_inf_center_y += coil.bore_center.y
                gm.air.points['bore_center' + str(coil_nr)] = self.occ.addPoint(coil.bore_center.x, coil.bore_center.y, 0.)
            air_inf_center = [air_inf_center_x / len(self.md.geometries.coil.coils), air_inf_center_y / len(self.md.geometries.coil.coils)]
            if symmetry == 'none':
                gm.air_inf.lines['inner'] = self.occ.addCircle(air_inf_center[0], air_inf_center[1], 0., radius_in)
                gm.air_inf.lines['outer'] = self.occ.addCircle(air_inf_center[0], air_inf_center[1], 0., radius_out)
                gm.air_inf.areas['inner'] = dM.Area(loop=self.occ.addCurveLoop([gm.air_inf.lines['inner']]))
                gm.air_inf.areas['outer'] = dM.Area(loop=self.occ.addCurveLoop([gm.air_inf.lines['outer']]))
                gm.air_inf.areas['outer'].surface = self.occ.addPlaneSurface([gm.air_inf.areas['outer'].loop, gm.air_inf.areas['inner'].loop])
            else:
                pnt1 = [1, 0] if symmetry in ['xy', 'x'] else [0, -1]
                pnt2 = [0, 1] if symmetry in ['xy', 'y'] else [-1, 0]
                gm.air.points['pnt1'] = self.occ.addPoint(pnt1[0] * radius_in, pnt1[1] * radius_in, 0)
                gm.air.points['pnt2'] = self.occ.addPoint(pnt2[0] * radius_in, pnt2[1] * radius_in, 0)
                gm.air_inf.points['pnt1'] = self.occ.addPoint(pnt1[0] * radius_out, pnt1[1] * radius_out, 0)
                gm.air_inf.points['pnt2'] = self.occ.addPoint(pnt2[0] * radius_out, pnt2[1] * radius_out, 0)
                gm.air.lines['ln1'] = self.occ.addLine(gm.air.points['pnt1'], gm.air_inf.points['pnt1'])
                gm.air.lines['ln2'] = self.occ.addLine(gm.air.points['pnt2'], gm.air_inf.points['pnt2'])
                if not self.data.magnet.geometry.electromagnetics.with_iron_yoke:
                    gm.air_inf.points['center'] = self.occ.addPoint(0, 0, 0)
                gm.air_inf.lines['inner'] = self.occ.addCircleArc(gm.air.points['pnt2'], gm.air_inf.points['center'], gm.air.points['pnt1'])
                gm.air_inf.lines['outer'] = self.occ.addCircleArc(gm.air_inf.points['pnt2'], gm.air_inf.points['center'], gm.air_inf.points['pnt1'])

                if symmetry in ['xy', 'x']:
                    gm.air.lines['x_p'] = self.occ.addLine(self.md.geometries.air_inf.points['center'] if 'solenoid' in self.geom.coil.coils[1].type else
                                                           gm.iron.quadrants[1].points[self.symmetric_bnds['x_p']['pnts'][-1][0]], gm.air.points['pnt1'])
                    self.symmetric_loop_lines['x'].append(gm.air.lines['x_p'])
                else:  # y
                    gm.air.lines['y_n'] = self.occ.addLine(gm.iron.quadrants[4].points[self.symmetric_bnds['y_n']['pnts'][-1][0]], gm.air.points['pnt1'])
                    self.symmetric_loop_lines['y'].append(gm.air.lines['y_n'])
                if symmetry in ['xy', 'y']:
                    gm.air.lines['y_p'] = self.occ.addLine(gm.iron.quadrants[1].points[self.symmetric_bnds['y_p']['pnts'][-1][0]], gm.air.points['pnt2'])
                    self.symmetric_loop_lines['y'].insert(0, gm.air.lines['y_p'])
                else:  # x
                    gm.air.lines['x_n'] = self.occ.addLine(self.md.geometries.air_inf.points['center'] if 'solenoid' in self.geom.coil.coils[1].type else
                                                           gm.iron.quadrants[2].points[self.symmetric_bnds['x_n']['pnts'][-1][0]], gm.air.points['pnt2'])
                    self.symmetric_loop_lines['x'].insert(0, gm.air.lines['x_n'])

                inner_lines = self.symmetric_loop_lines['x'] + [gm.air_inf.lines['inner']] + self.symmetric_loop_lines['y']\
                    if symmetry == 'xy' else self.symmetric_loop_lines[symmetry] + [gm.air_inf.lines['inner']]
                gm.air_inf.areas['inner'] = dM.Area(loop=self.occ.addCurveLoop(inner_lines))
                gm.air_inf.areas['outer'] = dM.Area(loop=self.occ.addCurveLoop(
                    [gm.air.lines['ln1'], gm.air_inf.lines['outer'], gm.air.lines['ln2'], gm.air_inf.lines['inner']]))
                gm.air_inf.areas['outer'].surface = self.occ.addPlaneSurface([gm.air_inf.areas['outer'].loop])
            # self.md.domains.groups_entities.air_inf = [gm.air_inf.areas['outer'].surface]
            gm.air_inf.areas['inner'].surface = self.occ.addPlaneSurface([gm.air_inf.areas['inner'].loop])

        self.occ.synchronize()
        #self.gu.launch_interactive_GUI()

    def fragment(self):
        """
            Fragment and group air domains
        """
        # Collect surfaces to be subtracted by background air
        holes = []

        # iron yoke and collar
        group_keys = self.nc.keys()

        for key in group_keys:
            group = getattr(self.md.domains.groups_entities, key)
            for _, surfaces in group.items():
                holes.extend([(2, s) for s in surfaces])

        # Coils
        for coil_nr, coil in self.md.geometries.coil.coils.items():
            for pole_nr, pole in coil.poles.items():
                for layer_nr, layer in pole.layers.items():
                    for winding_nr, winding in layer.windings.items():
                        for block_key, block in winding.blocks.items():
                            for area_name, area in block.half_turns.areas.items():
                                holes.append((2, area.surface))
        # Wedges
        for coil_nr, coil in self.md.geometries.wedges.coils.items():
            for layer_nr, layer in coil.layers.items():
                for wedge_nr, wedge in layer.wedges.items():
                    for area_name, area in wedge.areas.items():
                        holes.append((2, area.surface))
        # Insulation
        # if run_type == 'TH' and not self.data.magnet.geometry.thermal.use_TSA:
        #     for coil_nr, coil in self.md.geometries.insulation.coils.items():
        #         for group_nr, group in coil.group.items():
        #             for area_name, area in group.ins.areas.items():
        #                 holes.append((2, area.surface))

        # Fragment
        fragmented = self.occ.fragment([(2, self.md.geometries.air_inf.areas['inner'].surface)], holes)[1]
        self.occ.synchronize()

        self.md.domains.groups_entities.air = []
        existing_domains = [e[0][1] for e in fragmented[1:]]
        for e in fragmented[0]:
            if e[1] not in existing_domains:
                self.md.domains.groups_entities.air.append(e[1])

    def updateTags(self, run_type, symmetry):
        # Update half turn line tags
        for coil_nr, coil in self.md.geometries.coil.coils.items():
            for pole_nr, pole in coil.poles.items():
                for layer_nr, layer in pole.layers.items():
                    for winding_nr, winding in layer.windings.items():
                        for block_key, block in winding.blocks.items():
                            hts = block.half_turns
                            # Get half turn ID numbers
                            area_list = list(hts.areas.keys())
                            for nr, ht_nr in enumerate(area_list):
                                first_tag = int(min(gmsh.model.getAdjacencies(2, hts.areas[ht_nr].surface)[1]))
                                hts.lines[ht_nr + 'i'] = first_tag
                                hts.lines[ht_nr + 'l'] = first_tag + 1
                                hts.lines[ht_nr + 'o'] = first_tag + 2
                                hts.lines[ht_nr + 'h'] = first_tag + 3

        # Update collar tags
        if run_type == "TH" and 'collar' in self.data.magnet.geometry.thermal.areas:
            for quad, old_tags in self.md.geometries.collar.quadrants.items():
                self.md.geometries.collar.inner_boundary_tags[quad] = [] # reset the inner boundary tags
                new_tags = []
                for name, area in  self.md.geometries.collar.quadrants[quad].areas.items(): # arcol contains the boundaries of the holes too
                    if not re.match(r"^ar.h", name):
                        # the issue is that you don't know which line is which, e.g. which is the inner collar line
                        new_tags.extend([int(k) for k in gmsh.model.getAdjacencies(2, area.surface)[1]])

                for k, name in enumerate(self.md.geometries.collar.quadrants[quad].lines.keys()):
                    self.md.geometries.collar.quadrants[quad].lines[name] = new_tags[k]

                # Update inner collar tags
                collar_lines = [self.md.geometries.collar.quadrants[quad].lines[name] for name in self.md.geometries.collar.quadrants[quad].lines.keys()]
                closest_dist = 1000.
                closest_lines = []
                max_dist = 0.0
                max_lines = []
                # We assume that the middle of the curve of the collar is the closest one to the centre (0,0)
                for tag in collar_lines:
                    ##x, y, _ = gmsh.model.getValue(1, tag, [0.0])  # pick one point on the line
                    curve_type = gmsh.model.getType(1, tag)
                    if curve_type == 'Line': # find the middle of the line
                        tag1, tag2 = gmsh.model.getAdjacencies(1, tag)[1]
                        x1, y1, z1 = gmsh.model.getValue(0, tag1, [])
                        x2, y2, z2 = gmsh.model.getValue(0, tag2, [])
                        x = 0.5 * (x1 + x2)
                        y = 0.5 * (y1 + y2)
                        # take the average of the end points
                        dist = np.sqrt(x ** 2 + y ** 2)
                    elif curve_type == "Circle": # use any point on the circle (same distance because concentric with origin)
                        x, y, z = gmsh.model.getValue(1, tag, [0.5])
                        dist = np.sqrt(x ** 2 + y ** 2)

                    if dist < closest_dist+1e-10:
                        if dist < closest_dist-1e-10: # clear if new min is found
                            closest_dist = dist
                            closest_lines = []
                        closest_lines.append(tag)
                    if dist > max_dist-1e-10:
                        if dist > max_dist+1e-10: # clear if new max is found
                            max_dist = dist
                            max_lines = []
                        max_lines.append(tag)
                self.md.geometries.collar.inner_boundary_tags[quad] = closest_lines
                self.md.geometries.collar.outer_boundary_tags[quad] = max_lines

                # outer collar tags, does not work because geom.iron has the old tags and this is not accurate anymore
                """
                outer = [old_tags.lines[name] for name in old_tags.lines.keys() if
                        self.geom.iron.hyper_lines[name].type == 'line']
                logger.info("outer tags", outer)
                self.md.geometries.collar.outer_boundary_tags[quad] = outer
                """

        # concerning the TSL, it seems impossible to get the tags of the lines, as they are not adjacent to a surface nor (yet) grouped in a physical group
        # only way to ensure equal tags is by creating them in the same way as gmsh orders the lines. (e.g. all at the start or all at the end would work)
        # we cannot swap order... soo lets hope that just a shift in numbers is sufficient
        if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA_new and self.data.magnet.mesh.thermal.collar.Enforce_TSA_mapping:
            shift = len(self.md.geometries.collar.inner_boundary_tags[1])*4 -4

            if 'poles' in self.data.magnet.geometry.thermal.areas:
                shift -= (1*4) # we shifted too much

            ## update TSA collar lines
            for _, ts in self.md.geometries.thin_shells.collar_layers.items():
                ts.lines['1'] += shift
            for _, ts in self.md.geometries.thin_shells.pole_layers.items():
                ts.lines['1'] += shift

            atts = ['mid_layers_ht_to_ht', 'mid_layers_wdg_to_ht', 'mid_layers_ht_to_wdg', 'mid_layers_wdg_to_wdg', 'mid_poles', 'mid_windings', 'mid_turn_blocks' , 'mid_wedge_turn']
            for at in atts:
                for _, ts_region in getattr(self.md.geometries.thin_shells, at).items():
                    try: ts_region = ts_region.mid_layers
                    except AttributeError: pass
                    for key in ts_region.lines.keys():
                        ts_region.lines[key] += shift

        # Update coil cooling tags
        ### no consistent way to get the tags of the cooling lines, so we assume that they are ordered in the same way as gmsh orders the lines
        if self.data.magnet.solve.thermal.collar_cooling.enabled:
            tags =[]
            ## if we want all cooling holes
            if self.data.magnet.solve.thermal.collar_cooling.which == 'all':
                for quad, region in self.md.geometries.collar.quadrants.items():
                    for name, area in region.areas.items():
                        if re.match(r"^ar.h", name):
                            tags.extend([int(k) for k in gmsh.model.getAdjacencies(2, area.surface)[1]])
            else:
                nr_applied_cooling = self.data.magnet.solve.thermal.collar_cooling.which
                nr = 1
                for _, quad_data in self.md.geometries.collar.quadrants.items():
                    for name, area in quad_data.areas.items():
                        if re.match(r"^ar.h", name):
                            if nr in nr_applied_cooling:
                                tags.extend([int(k) for k in gmsh.model.getAdjacencies(2, area.surface)[1]])
                            nr += 1
            self.md.geometries.collar.cooling_tags = tags


                # Update insulation line tags
        if run_type == 'TH' and not self.data.magnet.geometry.thermal.use_TSA:
            pass  # todo

        # Update wedge line tags
        for coil_nr, coil in self.md.geometries.wedges.coils.items():
            for layer_nr, layer in coil.layers.items():
                for wedge_nr, wedge in layer.wedges.items():
                    lines_tags = list(gmsh.model.getAdjacencies(2, wedge.areas[str(wedge_nr)].surface)[1])
                    lines_tags.sort(key=lambda x: x)
                    wedge.lines['i'] = int(lines_tags[0])
                    wedge.lines['l'] = int(lines_tags[1])
                    wedge.lines['o'] = int(lines_tags[2])
                    wedge.lines['h'] = int(lines_tags[3])

        if run_type == 'EM':
            def _get_bnd_lines():
                return [pair[1] for pair in self.occ.getEntitiesInBoundingBox(corner_min[0], corner_min[1], corner_min[2],
                                                                              corner_max[0], corner_max[1], corner_max[2], dim=1)]

            tol = 1e-6
            # Update tags of air and air_inf arcs and their points
            lines_tags = gmsh.model.getAdjacencies(2, self.md.geometries.air_inf.areas['outer'].surface)[1]
            self.md.geometries.air_inf.lines['outer'] = int(lines_tags[0 if symmetry == 'none' else 1])
            self.md.geometries.air_inf.lines['inner'] = int(lines_tags[1 if symmetry == 'none' else 3])
            if symmetry == 'none':  # todo: check if this holds for symmetric models too
                for coil_nr, coil in self.md.geometries.coil.coils.items():
                    self.md.geometries.air.points['bore_center' + str(coil_nr)] += 2
            else:
                pnt_tags = list(gmsh.model.getAdjacencies(1, self.md.geometries.air_inf.lines['outer'])[1])
                indexes = [0, 1, 0] if 'x' in symmetry else [1, 0, 1]
                pnts = [0, 1] if gmsh.model.getValue(0, pnt_tags[indexes[0]], [])[indexes[2]] >\
                                 gmsh.model.getValue(0, pnt_tags[indexes[1]], [])[indexes[2]] else [1, 0]
                self.md.geometries.air_inf.points['pnt1'] = int(pnt_tags[pnts[0]])
                self.md.geometries.air_inf.points['pnt2'] = int(pnt_tags[pnts[1]])
                pnt_tags = list(gmsh.model.getAdjacencies(1, self.md.geometries.air_inf.lines['inner'])[1])
                pnts = [0, 1] if gmsh.model.getValue(0, pnt_tags[indexes[0]], [])[indexes[2]] > \
                                 gmsh.model.getValue(0, pnt_tags[indexes[1]], [])[indexes[2]] else [1, 0]
                self.md.geometries.air.points['pnt1'] = int(pnt_tags[pnts[0]])
                self.md.geometries.air.points['pnt2'] = int(pnt_tags[pnts[1]])
                for coil_nr, coil in self.md.geometries.coil.coils.items():
                    self.md.geometries.air.points['bore_center' + str(coil_nr)] =(
                        self.occ.getEntitiesInBoundingBox(-tol + coil.bore_center.x, -tol + coil.bore_center.y, -tol,
                                                          tol + coil.bore_center.x, tol + coil.bore_center.y, tol, dim=0))[0][1]

            # Group symmetry boundary lines per type
            if symmetry == 'xy':
                corner_min = [-tol, -tol, -tol]
                corner_max = [gmsh.model.getValue(0, self.md.geometries.air_inf.points['pnt1'], [])[0] + tol, tol, tol]
                self.md.domains.groups_entities.symmetric_boundaries.x = _get_bnd_lines()
                corner_max = [tol, gmsh.model.getValue(0, self.md.geometries.air_inf.points['pnt2'], [])[1] + tol, tol]
                self.md.domains.groups_entities.symmetric_boundaries.y = _get_bnd_lines()
            elif symmetry == 'x':
                x_coord = gmsh.model.getValue(0, self.md.geometries.air_inf.points['pnt1'], [])[0]
                corner_min = [- x_coord - tol, -tol, -tol]
                corner_max = [x_coord + tol, tol, tol]
                self.md.domains.groups_entities.symmetric_boundaries.x = _get_bnd_lines()
            elif symmetry == 'y':
                y_coord = gmsh.model.getValue(0, self.md.geometries.air_inf.points['pnt2'], [])[1]
                corner_min = [-tol, - y_coord - tol, -tol]
                corner_max = [tol, y_coord + tol, tol]
                self.md.domains.groups_entities.symmetric_boundaries.y = _get_bnd_lines()

    def move_keypoints(self, keypoints, displacement, keypoint_names=None):
        if keypoint_names is None:
            keypoint_names = []
            for name, hole in self.geom.iron.hyper_areas.items():
                if not 'ch' in name: # ch -> collar hole
                    continue
                line_names = hole.lines
                keypoint_names.append(list(set([getattr(self.geom.iron.hyper_lines[line], kp_name)
                                      for line in line_names for kp_name in ['kp1', 'kp2', 'kp3']])))
        if type(displacement) == list:
            list_displacement = displacement
        elif str(displacement) == "0":
            list_displacement = [[0.0, 0.0], [0.0, 0.0]]
        elif str(displacement) == "1":
            list_displacement = [[0.004, -0.015], [0.03, -0.025]]
        elif str(displacement) == "2":
            list_displacement = [[0.004, -0.015], [0.0, 0.0]]
        elif str(displacement) == "3":
            list_displacement = [[-0.035, 0.045], [-0.004, -0.0015]]
        else:
            raise ValueError("displacement_type not recognized")
        for i, hole in enumerate(keypoint_names):
            for name in hole:
                if name is None:
                    continue
                keypoints[name].x += list_displacement[i][0]
                keypoints[name].y += list_displacement[i][1]
        return keypoints

__init__(data=None, geom=None, geom_folder=None, verbose=False)

Class to generate geometry

Parameters:

Name Type Description Default
data FDM()

FiQuS data model

None
geom FiQuSGeometry()

ROXIE geometry data

None
verbose bool

If True more information is printed in python console.

False
Source code in fiqus/geom_generators/GeometryMultipole.py
def __init__(self, data: dF.FDM() = None, geom: FiQuSGeometry() = None,
             geom_folder: str = None, verbose: bool = False):
    """
    Class to generate geometry
    :param data: FiQuS data model
    :param geom: ROXIE geometry data
    :param verbose: If True more information is printed in python console.
    """
    self.data: dF.FDM() = data
    self.geom: FiQuSGeometry() = geom.Roxie_Data

    # move cooling holes to a desired position
    if self.data.magnet.solve.thermal.collar_cooling.move_cooling_holes:
        self.geom.iron.key_points = self.move_keypoints(self.geom.iron.key_points, self.data.magnet.solve.thermal.collar_cooling.move_cooling_holes)

    self.geom_folder = geom_folder
    self.verbose: bool = verbose

    self.md = dM.MultipoleData()

    self.gu = GmshUtils(self.geom_folder, self.verbose)
    self.gu.initialize(verbosity_Gmsh=self.data.run.verbosity_Gmsh)
    self.occ = gmsh.model.occ

    self.model_file = os.path.join(self.geom_folder, self.data.general.magnet_name)

    self.blk_ins_lines = {}  # for meshed insulation
    self.ins_wire_lines = {}  # for meshed insulation
    self.block_coil_mid_pole_blks = {}

    self.nc = {'collar': 'c', 'iron_yoke': 'i', 'poles': 'p'}
    self.inv_nc = {v: k for k, v in self.nc.items()} #invert naming convention

    if self.data.magnet.geometry.electromagnetics.symmetry != 'none':
        self.symmetric_loop_lines = {'x': [], 'y': []}
        self.symmetric_bnds = {'x_p': {'pnts': [], 'line_pnts': []}, 'y_p': {'pnts': [], 'line_pnts': []},
                               'x_n': {'pnts': [], 'line_pnts': []}, 'y_n': {'pnts': [], 'line_pnts': []}}

buildDomains(run_type, symmetry)

Generates plane surfaces from the curve loops

Source code in fiqus/geom_generators/GeometryMultipole.py
def buildDomains(self, run_type, symmetry):
    """
        Generates plane surfaces from the curve loops
    """
    iron = self.geom.iron
    gm = self.md.geometries
    geometry_setting = self.data.magnet.geometry.electromagnetics if run_type == 'EM' \
        else self.data.magnet.geometry.thermal

    with_wedges = geometry_setting.with_wedges

    inv_nc = {v: k for k, v in self.nc.items()} #invert naming convention
    for a in geometry_setting.areas: # a in ['iron_yoke', 'collar', ...]:
        for quadrant, qq in getattr(gm, a).quadrants.items():
            for area_name, area in qq.areas.items():
                identifier = next((k for k in self.inv_nc.keys() if (k in area_name[2:])), None)#re.sub(r'\d+', '',area_name[2:])
                if a == inv_nc.get(identifier, None): # ensure it is part of the iron yoke or collar (iron, collar)
                    build = True
                    loops = [area.loop]
                    for hole_key, hole in iron.hyper_holes.items():
                        if area_name == hole.areas[1]:
                            loops.append(qq.areas[hole.areas[0]].loop)
                        elif area_name == hole.areas[0]: #skip holes
                            area.surface = self.occ.addPlaneSurface(loops) # also build the holes. An existing curveloop without area is very annoying
                            build = False
                    if build:
                        area.surface = self.occ.addPlaneSurface(loops)
                        getattr(self.md.domains.groups_entities, a)[iron.hyper_areas[area_name].material].append(area.surface) ## save the material

    # Build coil domains
    for coil_nr, coil in gm.coil.coils.items():
        for pole_nr, pole in coil.poles.items():
            for layer_nr, layer in pole.layers.items():
                for winding_nr, winding in layer.windings.items():
                    for block_key, block in winding.blocks.items():
                        for area_name, area in block.half_turns.areas.items():
                            area.surface = self.occ.addPlaneSurface([area.loop])

    # Build wedges domains
    if with_wedges:
        for coil_nr, coil in gm.wedges.coils.items():
            for layer_nr, layer in coil.layers.items():
                for wedge_nr, wedge in layer.wedges.items():
                    wedge.areas[str(wedge_nr)].surface = self.occ.addPlaneSurface([wedge.areas[str(wedge_nr)].loop])

    # Build insulation domains
    if run_type == 'TH' and not geometry_setting.use_TSA:
        for coil_nr, coil in gm.insulation.coils.items():
            for group_nr, group in coil.group.items():
                holes = []
                for blk in group.blocks:
                    holes.extend([ht.loop for ht_nr, ht in gm.coil.coils[
                        coil_nr].poles[blk[0]].layers[blk[1]].windings[blk[2]].blocks[blk[3]].half_turns.areas.items()])
                for wdg in group.wedges:
                    holes.extend([wedge.loop for wedge_nr, wedge in gm.wedges.coils[
                        coil_nr].layers[wdg[0]].wedges[wdg[1]].areas.items()])
                if len(group.ins.areas) == 1:
                    for area_name, area in group.ins.areas.items():
                        area.surface = self.occ.addPlaneSurface([area.loop] + holes)
                else:
                    for area_name, area in group.ins.areas.items():
                        if area_name.isdigit():
                            area.surface = self.occ.addPlaneSurface([area.loop] + holes + [group.ins.areas['inner_loop'].loop])

    # Create and build air far field
    if run_type == 'EM':
        if 'iron_yoke' in geometry_setting.areas:
            for i in iron.key_points:
                gm.iron_yoke.max_radius = max(gm.iron_yoke.max_radius, max(iron.key_points[i].x, iron.key_points[i].y)) # this also contains other regions, e.g. collar but this has no effect
            greatest_radius = gm.iron_yoke.max_radius
        else:  # no iron yoke data available
            for coil_nr, coil in self.geom.coil.coils.items():
                for pole_nr, pole in coil.poles.items():
                    first_winding = list(pole.layers[len(pole.layers)].windings.keys())[0]
                    first_block = list(pole.layers[len(pole.layers)].windings[first_winding].blocks)[0]
                    gm.coil.max_radius = max(abs(pole.layers[len(pole.layers)].windings[first_winding].blocks[first_block].block_corners.oL.x),
                                             abs(pole.layers[len(pole.layers)].windings[first_winding].blocks[first_block].block_corners.oL.y),
                                             gm.coil.max_radius)
            greatest_radius = gm.coil.max_radius
        radius_in = greatest_radius * (2.5 if 'iron_yoke' in geometry_setting.areas else 6)
        radius_out = greatest_radius * (3.2 if 'iron_yoke' in geometry_setting.areas else 8)
        air_inf_center_x, air_inf_center_y = 0, 0
        for coil_nr, coil in self.md.geometries.coil.coils.items():
            air_inf_center_x += coil.bore_center.x
            air_inf_center_y += coil.bore_center.y
            gm.air.points['bore_center' + str(coil_nr)] = self.occ.addPoint(coil.bore_center.x, coil.bore_center.y, 0.)
        air_inf_center = [air_inf_center_x / len(self.md.geometries.coil.coils), air_inf_center_y / len(self.md.geometries.coil.coils)]
        if symmetry == 'none':
            gm.air_inf.lines['inner'] = self.occ.addCircle(air_inf_center[0], air_inf_center[1], 0., radius_in)
            gm.air_inf.lines['outer'] = self.occ.addCircle(air_inf_center[0], air_inf_center[1], 0., radius_out)
            gm.air_inf.areas['inner'] = dM.Area(loop=self.occ.addCurveLoop([gm.air_inf.lines['inner']]))
            gm.air_inf.areas['outer'] = dM.Area(loop=self.occ.addCurveLoop([gm.air_inf.lines['outer']]))
            gm.air_inf.areas['outer'].surface = self.occ.addPlaneSurface([gm.air_inf.areas['outer'].loop, gm.air_inf.areas['inner'].loop])
        else:
            pnt1 = [1, 0] if symmetry in ['xy', 'x'] else [0, -1]
            pnt2 = [0, 1] if symmetry in ['xy', 'y'] else [-1, 0]
            gm.air.points['pnt1'] = self.occ.addPoint(pnt1[0] * radius_in, pnt1[1] * radius_in, 0)
            gm.air.points['pnt2'] = self.occ.addPoint(pnt2[0] * radius_in, pnt2[1] * radius_in, 0)
            gm.air_inf.points['pnt1'] = self.occ.addPoint(pnt1[0] * radius_out, pnt1[1] * radius_out, 0)
            gm.air_inf.points['pnt2'] = self.occ.addPoint(pnt2[0] * radius_out, pnt2[1] * radius_out, 0)
            gm.air.lines['ln1'] = self.occ.addLine(gm.air.points['pnt1'], gm.air_inf.points['pnt1'])
            gm.air.lines['ln2'] = self.occ.addLine(gm.air.points['pnt2'], gm.air_inf.points['pnt2'])
            if not self.data.magnet.geometry.electromagnetics.with_iron_yoke:
                gm.air_inf.points['center'] = self.occ.addPoint(0, 0, 0)
            gm.air_inf.lines['inner'] = self.occ.addCircleArc(gm.air.points['pnt2'], gm.air_inf.points['center'], gm.air.points['pnt1'])
            gm.air_inf.lines['outer'] = self.occ.addCircleArc(gm.air_inf.points['pnt2'], gm.air_inf.points['center'], gm.air_inf.points['pnt1'])

            if symmetry in ['xy', 'x']:
                gm.air.lines['x_p'] = self.occ.addLine(self.md.geometries.air_inf.points['center'] if 'solenoid' in self.geom.coil.coils[1].type else
                                                       gm.iron.quadrants[1].points[self.symmetric_bnds['x_p']['pnts'][-1][0]], gm.air.points['pnt1'])
                self.symmetric_loop_lines['x'].append(gm.air.lines['x_p'])
            else:  # y
                gm.air.lines['y_n'] = self.occ.addLine(gm.iron.quadrants[4].points[self.symmetric_bnds['y_n']['pnts'][-1][0]], gm.air.points['pnt1'])
                self.symmetric_loop_lines['y'].append(gm.air.lines['y_n'])
            if symmetry in ['xy', 'y']:
                gm.air.lines['y_p'] = self.occ.addLine(gm.iron.quadrants[1].points[self.symmetric_bnds['y_p']['pnts'][-1][0]], gm.air.points['pnt2'])
                self.symmetric_loop_lines['y'].insert(0, gm.air.lines['y_p'])
            else:  # x
                gm.air.lines['x_n'] = self.occ.addLine(self.md.geometries.air_inf.points['center'] if 'solenoid' in self.geom.coil.coils[1].type else
                                                       gm.iron.quadrants[2].points[self.symmetric_bnds['x_n']['pnts'][-1][0]], gm.air.points['pnt2'])
                self.symmetric_loop_lines['x'].insert(0, gm.air.lines['x_n'])

            inner_lines = self.symmetric_loop_lines['x'] + [gm.air_inf.lines['inner']] + self.symmetric_loop_lines['y']\
                if symmetry == 'xy' else self.symmetric_loop_lines[symmetry] + [gm.air_inf.lines['inner']]
            gm.air_inf.areas['inner'] = dM.Area(loop=self.occ.addCurveLoop(inner_lines))
            gm.air_inf.areas['outer'] = dM.Area(loop=self.occ.addCurveLoop(
                [gm.air.lines['ln1'], gm.air_inf.lines['outer'], gm.air.lines['ln2'], gm.air_inf.lines['inner']]))
            gm.air_inf.areas['outer'].surface = self.occ.addPlaneSurface([gm.air_inf.areas['outer'].loop])
        # self.md.domains.groups_entities.air_inf = [gm.air_inf.areas['outer'].surface]
        gm.air_inf.areas['inner'].surface = self.occ.addPlaneSurface([gm.air_inf.areas['inner'].loop])

    self.occ.synchronize()

constructCoilGeometry(run_type)

Generates points, hyper lines, and curve loops for the coil half-turns

Source code in fiqus/geom_generators/GeometryMultipole.py
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
def constructCoilGeometry(self, run_type):
    """
        Generates points, hyper lines, and curve loops for the coil half-turns
    """
    symmetry = self.data.magnet.geometry.electromagnetics.symmetry if run_type == 'EM' else 'none'
    # Sub domains angles: first key means 'from 0 to x'; second key means 'from x to 2*pi'
    if symmetry == 'xy':
        angle_range = {'to': np.pi / 2, 'from': 2 * np.pi}
    elif symmetry == 'x':
        angle_range = {'to': np.pi, 'from': 2 * np.pi}
    elif symmetry == 'y':
        angle_range = {'to': np.pi / 2, 'from': 3 / 2 * np.pi}
    elif symmetry == 'none':
        angle_range = {'to': 2 * np.pi, 'from': 0}
    else:
        raise Exception('Symmetry plane not supported.')

    def _addMidLayerThinShellPoints(pnt_params, ss, name, case):
        endpnts, cnt = ts_endpoints[name]
        if len(pnt_params) == 3:  # line parameters (cos-theta Rutherford)
            intersect[name] = Func.intersection_between_arc_and_line(pnt_params, [cnt, endpnts['higher'], endpnts['lower']])
            if intersect[name]:
                intersect[name] = intersect[name][0]
                pnt_angle = Func.arc_angle_between_point_and_abscissa(intersect[name], cnt)
        elif len(pnt_params) == 4:  # points coordinates (cos-theta Mono)
            wnd_next = list(pole.layers[layer_nr + (1 if case == 'current' else -1)].windings.keys())[
                list(pole.layers[layer_nr].windings.keys()).index(winding_nr)]
            blk_next = pole.layers[layer_nr + (1 if case == 'current' else -1)].windings[wnd_next].blocks[
                int(ts_name[ts_name.index('_') + 1:] if case == 'current' else ts_name[:ts_name.index('_')])]
            ht_next = blk_next.half_turns[list(blk_next.half_turns.keys() if is_first_blk else reversed(blk_next.half_turns.keys()))[ht_list.index(halfTurn_nr)]].corners.bare
            coord_next = (ht_next.iL if ss == 'l' else ht_next.iH) if case == 'current' else (ht_next.oL if ss == 'l' else ht_next.oH)
            pnt = [(pnt_params[2 if case == 'current' else 0] + coord_next.x) / 2, (pnt_params[3 if case == 'current' else 1] + coord_next.y) / 2]
            pnt_angle = Func.arc_angle_between_point_and_abscissa(pnt, cnt)
            pnt_angle_h = Func.arc_angle_between_point_and_abscissa(endpnts['higher'], cnt)
            pnt_angle_l = Func.arc_angle_between_point_and_abscissa(endpnts['lower'], cnt)
            intersect[name] = pnt if pnt_angle_h > pnt_angle > pnt_angle_l else None
        else:  # point coordinates (block-coil)
            pnt = [endpnts['higher'][0], pnt_params[1]] if coil.type == 'common-block-coil' else [pnt_params[0], endpnts['higher'][1]]
            if abs(endpnts['higher'][1]) > 1e-6:
                pnt_angle = Func.arc_angle_between_point_and_abscissa(pnt, cnt)
                pnt_angle_h = Func.arc_angle_between_point_and_abscissa(endpnts['higher'], cnt)
                pnt_angle_l = Func.arc_angle_between_point_and_abscissa(endpnts['lower'], cnt)
            else:
                pnt_angle = abs(pnt_params[0])
                pnt_angle_h = abs(endpnts['higher'][0])
                pnt_angle_l = abs(endpnts['lower'][0])
            intersect[name] = pnt if pnt_angle_h > pnt_angle > pnt_angle_l else None
        if intersect[name]:
            mid_layer_ts[name].mid_layers.points[str(halfTurn_nr) + ss] = \
                self.occ.addPoint(intersect[name][0], intersect[name][1], 0)
            mid_layer_ts[name].point_angles[str(halfTurn_nr) + ss] = Func.sig_dig(pnt_angle)
        if len(pnt_params) == 2 and not intersect[name] and (abs(pnt_angle - pnt_angle_h) < 1e-6 or abs(pnt_angle - pnt_angle_l) < 1e-6):
            intersect[name] = pnt
        return intersect

    def _addMidLayerThinShellGroup(cl, for_mid_pole=False, mid_coil=False):
        is_first_blk_next = block_nr_next == list(winding_next.blocks.keys())[0]
        if 'solenoid' in cl.type:
            ht_list_next = list(reversed(block_next.half_turns.keys()) if layer_nr % 2 == 0 else list(block_next.half_turns.keys()))
        elif cl.type == 'reversed-block-coil':
            ht_list_next = (list(block_next.half_turns.keys()) if not is_first_blk_next else list(reversed(block_next.half_turns.keys())))
        else:
            ht_list_next = (list(block_next.half_turns.keys()) if is_first_blk_next else list(reversed(block_next.half_turns.keys())))
        hh = block_next.half_turns[ht_list_next[-1]].corners.bare
        ll = block_next.half_turns[ht_list_next[0]].corners.bare
        bc_next = Corner(oH=hh.oH, iH=hh.iH, oL=ll.oL, iL=ll.iL)
        if 'block-coil' in cl.type or (cable_type_curr in ['Mono', 'Ribbon'] and not mid_coil):
            center = [cl.bore_center.x, cl.bore_center.y]
            are_endpoints = self.getMidLayerEndpoints(bc_current, bc_next, center, coil_type=cl.type, cable_type=cable_type_curr, is_for_mid_pole=for_mid_pole)
        else:
            mean_rad_next = (Func.points_distance([bc_next.iH.x, bc_next.iH.y], [cl.bore_center.x, cl.bore_center.y]) +
                             Func.points_distance([bc_next.iL.x, bc_next.iL.y], [cl.bore_center.x, cl.bore_center.y])) / 2
            mean_rad = (mean_rad_current + mean_rad_next) / 2
            mid_layer_h = self.findMidLayerPoint(bc_current.oH, bc_next.iH, cl.bore_center, mean_rad)
            mid_layer_l = self.findMidLayerPoint(bc_current.oL, bc_next.iL, cl.bore_center, mean_rad)
            mid_ht_next_i = int(len(ht_list_next) / 2) if len(ht_list_next) % 2 == 0 else round(len(ht_list_next) / 2)
            mid_ht_next = block_next.half_turns[ht_list_next[mid_ht_next_i - 1]].corners.insulated
            mid_layer_m = self.findMidLayerPoint(mid_ht_current.oH, mid_ht_next.iH, cl.bore_center, mean_rad)
            center = Func.arc_center_from_3_points(mid_layer_h, mid_layer_m, mid_layer_l)
            are_endpoints = self.getMidLayerEndpoints(bc_current, bc_next, center, mid_layer_arc_pnt=mid_layer_h, cable_type=cable_type_curr)
        if are_endpoints:  # this is empty if the blocks are not radially adjacent
            endpoints = are_endpoints[0]
            which_block = are_endpoints[1]
            mid_layer_name = blk_nr + '_' + str(block_nr_next)
            if for_mid_pole:
                block_coil_mid_pole_next_blks_list[block_nr_next].append(mid_layer_name)
                block_coil_ts_endpoints[mid_layer_name] = [endpoints, center]
            else:
                if block_nr_next not in list(next_blks_list.keys()):
                    next_blks_list[block_nr_next] = []
                next_blks_list[block_nr_next].append(mid_layer_name)
                ts_endpoints[mid_layer_name] = [endpoints, center]
            mid_layer_ts[mid_layer_name] = dM.MidLayer()
            mid_layer_ts[mid_layer_name].half_turn_lists[blk_nr] = ht_list
            mid_layer_ts[mid_layer_name].half_turn_lists[str(block_nr_next)] = ht_list_next
            beg = (str(ht_list[0]) if which_block['lower'] == 'current' else str(ht_list_next[0])) + 'l'
            mid_layer_ts[mid_layer_name].mid_layers.points[beg] = \
                self.occ.addPoint(endpoints['lower'][0], endpoints['lower'][1], 0)
            end = (str(ht_list[-1]) if which_block['higher'] == 'current' else str(ht_list_next[-1])) + 'h'
            mid_layer_ts[mid_layer_name].mid_layers.points[end] = \
                self.occ.addPoint(endpoints['higher'][0], endpoints['higher'][1], 0)
            if not for_mid_pole or (for_mid_pole and abs(endpoints['higher'][1]) > 1e-6):
                mid_layer_ts[mid_layer_name].point_angles[beg] =\
                    Func.sig_dig(Func.arc_angle_between_point_and_abscissa(endpoints['lower'], center))
                mid_layer_ts[mid_layer_name].point_angles[end] =\
                    Func.sig_dig(Func.arc_angle_between_point_and_abscissa(endpoints['higher'], center))
            else:
                mid_layer_ts[mid_layer_name].point_angles[beg] = abs(endpoints['lower'][0])
                mid_layer_ts[mid_layer_name].point_angles[end] = abs(endpoints['higher'][0])

    # Create anticlockwise order of blocks
    present_blocks = []
    block_corner_angles = {}
    concentric_coils = self.md.geometries.coil.concentric_coils
    acw_order = self.md.geometries.coil.anticlockwise_order.coils
    self.md.geometries.coil.physical_order = self.geom.coil.physical_order
    for coil_nr, coil in self.geom.coil.coils.items():
        # if coil_nr not in block_corner_angles:
        block_corner_angles[coil_nr] = {}
        if (coil.bore_center.x, coil.bore_center.y) not in concentric_coils:
            concentric_coils[(coil.bore_center.x, coil.bore_center.y)] = []
        concentric_coils[(coil.bore_center.x, coil.bore_center.y)].append(coil_nr)
        for pole_nr, pole in coil.poles.items():
            for layer_nr, layer in pole.layers.items():
                if layer_nr not in block_corner_angles[coil_nr]:
                    block_corner_angles[coil_nr][layer_nr] = {}
                blk_angles = block_corner_angles[coil_nr][layer_nr]
                for winding_nr, winding in layer.windings.items():
                    for block_nr, block in winding.blocks.items():
                        blk_angles[block_nr] = {'angle': Func.sig_dig(Func.arc_angle_between_point_and_abscissa(
                            [block.block_corners.iL.x, block.block_corners.iL.y],
                            [coil.bore_center.x, coil.bore_center.y])), 'keys': [pole_nr, winding_nr]}
                        higher_angle = Func.sig_dig(Func.arc_angle_between_point_and_abscissa(
                            [block.block_corners.iH.x, block.block_corners.iH.y],
                            [coil.bore_center.x, coil.bore_center.y]))
                        if ((blk_angles[block_nr]['angle'] <= angle_range['to'] and higher_angle <= angle_range['to']) or
                                (angle_range['from'] <= blk_angles[block_nr]['angle'] and angle_range['from'] <= higher_angle)):
                            present_blocks.append(block_nr)
    for coil_nr, coil in block_corner_angles.items():
        acw_order[coil_nr] = dM.LayerOrder()
        for layer_nr, layer in coil.items():
            acw_order[coil_nr].layers[layer_nr] = []
            ordered_blocks = [[block_nr, block['angle'], block['keys']] for block_nr, block in layer.items()]
            ordered_blocks.sort(key=lambda x: x[1])
            for blk in ordered_blocks:
                if blk[0] in present_blocks:
                    acw_order[coil_nr].layers[layer_nr].append(dM.AnticlockwiseOrder(pole=blk[2][0], winding=blk[2][1], block=blk[0]))

    # Check if there are concentric coils
    for bore_center, coils in concentric_coils.items():
        if len(coils) > 1:
            radii = []
            for coil_nr in coils:
                lyr = self.geom.coil.coils[coil_nr].poles[1].layers[1]
                blk = list(lyr.windings.keys())[0]
                radii.append([coil_nr, Func.points_distance(bore_center, [lyr.windings[blk].blocks[blk].block_corners.iL.x, lyr.windings[blk].blocks[blk].block_corners.iL.y])])
            radii.sort(key=lambda x: x[1])
            concentric_coils[bore_center] = [rad[0] for rad in radii]

    if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA:
        mid_layer_ts = self.md.geometries.thin_shells.mid_layers_ht_to_ht
        # Collect block couples for block-coil mid-pole thin shells
        block_coil_mid_pole_next_blks_list = {}
        block_coil_ts_endpoints = {}
        for coil_nr, coil in self.md.geometries.coil.anticlockwise_order.coils.items():
            if self.geom.coil.coils[coil_nr].type in ['block-coil', 'reversed-block-coil']:
                self.block_coil_mid_pole_blks[coil_nr] = []
                first_lyr = list(coil.layers.keys())[0]
                layer = coil.layers[first_lyr]
                for nr, block_order in enumerate(layer):
                    blk_next_index = nr + 1 if nr + 1 < len(layer) else 0
                    if layer[blk_next_index].pole != block_order.pole:
                        self.block_coil_mid_pole_blks[coil_nr].append([block_order, layer[blk_next_index]])
                        block_coil_mid_pole_next_blks_list[layer[blk_next_index].block] = []
        # Mid pole lines for block-coils
        for coil_nr, coil in self.block_coil_mid_pole_blks.items():
            coil_geom = self.geom.coil.coils[coil_nr]
            for mid_pole in coil:
                winding = self.geom.coil.coils[coil_nr].poles[mid_pole[0].pole].layers[1].windings[mid_pole[0].winding]
                cable_type_curr = self.data.conductors[winding.conductor_name].cable.type
                block_nr = mid_pole[0].block
                blk_nr = str(block_nr)
                block = winding.blocks[block_nr]
                is_first_blk = block_nr == list(winding.blocks.keys())[0]
                if coil_geom.type == 'reversed-block-coil':
                    ht_list = (list(block.half_turns.keys()) if not is_first_blk else list(reversed(block.half_turns.keys())))
                else:
                    ht_list = (list(block.half_turns.keys()) if is_first_blk else list(reversed(block.half_turns.keys())))
                hh = block.half_turns[ht_list[-1]].corners.bare
                ll = block.half_turns[ht_list[0]].corners.bare
                bc_current = Corner(oH=hh.oH, iH=hh.iH, oL=ll.oL, iL=ll.iL)
                winding_next = self.geom.coil.coils[coil_nr].poles[mid_pole[1].pole].layers[1].windings[mid_pole[1].winding]
                block_nr_next = mid_pole[1].block
                block_next = winding_next.blocks[block_nr_next]
                _addMidLayerThinShellGroup(coil_geom, for_mid_pole=True)

    mid_layer_ts_aux = self.md.geometries.thin_shells.mid_layers_aux
    self.md.geometries.coil.physical_order = self.geom.coil.physical_order
    if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA:
        next_blks_list = block_coil_mid_pole_next_blks_list.copy()
        ts_endpoints = block_coil_ts_endpoints.copy()
    for coil_nr, coil in self.geom.coil.coils.items():
        self.md.geometries.coil.coils[coil_nr] = dM.Pole()
        coils = self.md.geometries.coil.coils[coil_nr]
        coils.type = coil.type
        coils.bore_center = coil.bore_center
        for pole_nr, pole in coil.poles.items():
            coils.poles[pole_nr] = dM.Layer()
            poles = coils.poles[pole_nr]
            for layer_nr, layer in pole.layers.items():
                poles.layers[layer_nr] = dM.Winding()
                layers = poles.layers[layer_nr]
                for winding_nr, winding in layer.windings.items():
                    cable_type_curr = self.data.conductors[winding.conductor_name].cable.type
                    layers.windings[winding_nr] = dM.Block(conductor_name=winding.conductor_name, conductors_number=winding.conductors_number)
                    windings = layers.windings[winding_nr]
                    blk_list_current = list(winding.blocks.keys())
                    for block_nr, block in winding.blocks.items():
                        if block_nr in present_blocks:
                            blk_nr = str(block_nr)
                            windings.blocks[block_nr] = dM.BlockData(current_sign=block.current_sign)
                            hts = windings.blocks[block_nr].half_turns
                            is_first_blk = block_nr == list(winding.blocks.keys())[0]
                            if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA:
                                if 'solenoid' in coil.type:
                                    ht_list = (list(reversed(block.half_turns.keys()) if (layer_nr - 1) % 2 == 0 else list(block.half_turns.keys())))
                                elif coil.type == 'reversed-block-coil':
                                    ht_list = (list(block.half_turns.keys()) if not is_first_blk else list(reversed(block.half_turns.keys())))
                                else:
                                    ht_list = (list(block.half_turns.keys()) if is_first_blk else list(reversed(block.half_turns.keys())))
                                hh = block.half_turns[ht_list[-1]].corners.bare
                                ll = block.half_turns[ht_list[0]].corners.bare
                                bc_current = Corner(oH=hh.oH, iH=hh.iH, oL=ll.oL, iL=ll.iL)
                                # Mid layer lines
                                mean_rad_current = (Func.points_distance([bc_current.oH.x, bc_current.oH.y], [coil.bore_center.x, coil.bore_center.y]) +
                                                    Func.points_distance([bc_current.oL.x, bc_current.oL.y], [coil.bore_center.x, coil.bore_center.y])) / 2
                                mid_ht_current_i = int(len(ht_list) / 2) if len(ht_list) % 2 == 0 else round(len(ht_list) / 2)
                                mid_ht_current = block.half_turns[ht_list[mid_ht_current_i - 1]].corners.insulated
                                concentric_coil = concentric_coils[(coil.bore_center.x, coil.bore_center.y)]
                                if layer_nr < len(pole.layers):
                                    for winding_nr_next, winding_next in pole.layers[layer_nr + 1].windings.items():
                                        if cable_type_curr == 'Rutherford' or\
                                                (cable_type_curr in ['Mono', 'Ribbon'] and
                                                 list(pole.layers[layer_nr + 1].windings.keys()).index(winding_nr_next) == list(layer.windings.keys()).index(winding_nr)):
                                            blk_list_next = list(winding_next.blocks.keys())
                                            block_nr_next = blk_list_next[blk_list_current.index(block_nr)]
                                            block_next = winding_next.blocks[block_nr_next]
                                            _addMidLayerThinShellGroup(coil)
                                elif concentric_coil.index(coil_nr) + 1 < len(concentric_coil):
                                    coil_nr_next = concentric_coil[concentric_coil.index(coil_nr) + 1]
                                    for pole_nr_next, pole_next in self.geom.coil.coils[coil_nr_next].poles.items():
                                        for layer_nr_next, layer_next in pole_next.layers.items():
                                            if layer_nr_next == 1:
                                                for winding_nr_next, winding_next in layer_next.windings.items():
                                                    for block_nr_next, block_next in winding_next.blocks.items():
                                                        _addMidLayerThinShellGroup(coil, mid_coil=True)
                            else:
                                blk_ins = windings.blocks[block_nr].insulation
                                blk_ins.areas[blk_nr] = dM.Area()

                            if 'solenoid' in coil.type:
                                ht_items = (list(reversed(block.half_turns.items()) if layer_nr - 1 % 2 == 0 else list(block.half_turns.items())))
                            elif coil.type == 'reversed-block-coil':
                                ht_items = (block.half_turns.items() if not is_first_blk else reversed(block.half_turns.items()))
                            else:
                                ht_items = (block.half_turns.items() if is_first_blk else reversed(block.half_turns.items()))
                            for halfTurn_nr, halfTurn in ht_items:
                                ht_nr = str(halfTurn_nr)
                                ht = halfTurn.corners.insulated
                                hts.areas[ht_nr] = dM.Area()
                                ht_b = halfTurn.corners.bare

                                hts.points[ht_nr + 'ih'] = self.occ.addPoint(ht_b.iH.x, ht_b.iH.y, 0)
                                hts.points[ht_nr + 'il'] = self.occ.addPoint(ht_b.iL.x, ht_b.iL.y, 0)
                                hts.points[ht_nr + 'oh'] = self.occ.addPoint(ht_b.oH.x, ht_b.oH.y, 0)
                                hts.points[ht_nr + 'ol'] = self.occ.addPoint(ht_b.oL.x, ht_b.oL.y, 0)

                                hts.lines[ht_nr + 'i'] = self.occ.addLine(hts.points[ht_nr + 'ih'], hts.points[ht_nr + 'il'])
                                hts.lines[ht_nr + 'o'] = self.occ.addLine(hts.points[ht_nr + 'oh'], hts.points[ht_nr + 'ol'])
                                hts.lines[ht_nr + 'l'] = self.occ.addLine(hts.points[ht_nr + 'il'], hts.points[ht_nr + 'ol'])
                                hts.lines[ht_nr + 'h'] = self.occ.addLine(hts.points[ht_nr + 'ih'], hts.points[ht_nr + 'oh'])

                                if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA:
                                    intersection = {}
                                    # Create mid layer points and compute their angle to the x-axis
                                    for mid_lyr_type in ['current', 'previous']:
                                        for pnt1, pnt2, side in zip(
                                                [[ht_b.iH.x, ht_b.iH.y], [ht_b.iL.x, ht_b.iL.y]],
                                                [[ht_b.oH.x, ht_b.oH.y], [ht_b.oL.x, ht_b.oL.y]], ['h', 'l']):
                                            if (cable_type_curr in ['Mono', 'Ribbon'] and coil.type == 'cos-theta' and
                                                    (layer_nr < len(pole.layers) and mid_lyr_type == 'current' or layer_nr > 1 and mid_lyr_type == 'previous')):
                                                pnts_input = pnt1 + pnt2
                                            elif coil.type == 'cos-theta' and (cable_type_curr == 'Rutherford' or cable_type_curr in ['Mono', 'Ribbon'] and\
                                                    (layer_nr == len(pole.layers) and mid_lyr_type == 'current' or layer_nr == 1 and mid_lyr_type == 'previous')):
                                                pnts_input = Func.line_through_two_points(pnt1, pnt2)
                                            elif 'block-coil' in coil.type:
                                                pnts_input = pnt1
                                            intersect = {}
                                            if mid_lyr_type == 'current':
                                                # Current mid-layer
                                                for ts_name in ts_endpoints.keys():
                                                    if blk_nr == ts_name[:ts_name.index('_')]:
                                                        _addMidLayerThinShellPoints(pnts_input, side, ts_name, mid_lyr_type)
                                            elif mid_lyr_type == 'previous':
                                                # Previous mid-layer
                                                if block_nr in next_blks_list:
                                                    for ts_name in next_blks_list[block_nr]:
                                                        _addMidLayerThinShellPoints(pnts_input, side, ts_name, mid_lyr_type)
                                            for key, value in intersect.items():
                                                if key in intersection:
                                                    intersection[key][side] = value
                                                else:
                                                    intersection[key] = {side: value}

                                    # Search for half turns that face thin shells only partially
                                    def __create_aux_mid_layer_point(ss, points):
                                        mid_layer_ts_aux[key] = dM.Region()
                                        if 'block-coil' in coil.type:
                                            inter_pnt = [points[0], ts_endpoints[key][0][ss][1]]
                                        else:
                                            inter_pnt = Func.intersection_between_circle_and_line(Func.line_through_two_points(points[0], points[1]),
                                                [ts_endpoints[key][1], ts_endpoints[key][0][ss]], get_only_closest=True)[0]
                                        mid_layer_ts_aux[key].points[str(halfTurn_nr) + ss[0]] = self.occ.addPoint(inter_pnt[0], inter_pnt[1], 0)
                                        mid_layer_ts_aux[key].lines[blk_nr] = 0
                                    for key, value in intersection.items():
                                        first_blk, second_blk = key.split('_')
                                        if 'block-coil' in coil.type: #any(int(second_blk) == blk_order.block for blk_order in acw_order[coil_nr].layers[layer_nr]):  # block-coil mid-pole case
                                            if value['h'] and not value['l']:
                                                __create_aux_mid_layer_point('lower', [ht_b.iL.x, ht_b.iL.y])
                                            elif value['l'] and not value['h']:
                                                __create_aux_mid_layer_point('higher', [ht_b.iH.x, ht_b.iH.y])
                                        else:
                                            relevant_blk = int(first_blk) if second_blk == blk_nr else int(second_blk)
                                            if layer_nr == len(pole.layers) and blk_nr == first_blk:
                                                lyr_blks = acw_order[coil_nr + 1].layers[1]
                                            elif layer_nr == 1 and blk_nr == second_blk:
                                                lyr_blks = acw_order[coil_nr - 1].layers[len(acw_order[coil_nr - 1].layers)]
                                            else:
                                                lyr_blks = acw_order[coil_nr].layers[layer_nr + (1 if first_blk == blk_nr else -1)]
                                            for nr, block_order in enumerate(lyr_blks):
                                                if block_order.block == relevant_blk:
                                                    block_order_curr = block_order
                                                    block_order_prev = lyr_blks[-1] if nr == 0 else lyr_blks[nr - 1]
                                                    block_order_next = lyr_blks[0] if nr + 1 == len(lyr_blks) else lyr_blks[nr + 1]
                                                    break
                                            if value['h'] and not value['l'] and block_order_curr.winding == block_order_prev.winding:
                                                __create_aux_mid_layer_point('lower', [[ht_b.iL.x, ht_b.iL.y], [ht_b.oL.x, ht_b.oL.y]])
                                            elif value['l'] and not value['h'] and block_order_curr.winding == block_order_next.winding:
                                                __create_aux_mid_layer_point('higher', [[ht_b.iH.x, ht_b.iH.y], [ht_b.oH.x, ht_b.oH.y]])
                                else:
                                    blk_ins.points[ht_nr + 'ih'] = self.occ.addPoint(ht.iH.x, ht.iH.y, 0)
                                    blk_ins.points[ht_nr + 'il'] = self.occ.addPoint(ht.iL.x, ht.iL.y, 0)
                                    blk_ins.points[ht_nr + 'oh'] = self.occ.addPoint(ht.oH.x, ht.oH.y, 0)
                                    blk_ins.points[ht_nr + 'ol'] = self.occ.addPoint(ht.oL.x, ht.oL.y, 0)

                                hts.areas[ht_nr].loop = self.occ.addCurveLoop(
                                    [hts.lines[ht_nr + 'i'],  # inner
                                     hts.lines[ht_nr + 'l'],  # lower
                                     hts.lines[ht_nr + 'o'],  # outer
                                     hts.lines[ht_nr + 'h']])  # higher

                            # Build wire order of the insulation lines of the current block
                            if run_type == 'TH' and not self.data.magnet.geometry.thermal.use_TSA:
                                ht_list = list(hts.areas.keys())
                                ht_list.extend(list(reversed(ht_list))[1:])
                                self.blk_ins_lines[block_nr] = ['l']
                                for nr, ht_nr in enumerate(ht_list):
                                    if nr + 1 == winding.conductors_number:  # end of first round
                                        self.blk_ins_lines[block_nr].extend([ht_nr + 'i', 'h', ht_nr + 'o'])
                                    else:
                                        if nr + 1 < winding.conductors_number:  # within first round
                                            self.blk_ins_lines[block_nr].extend([ht_nr + 'i', ht_nr + 'i' + ht_list[nr + 1]])
                                        else:  # within second round
                                            self.blk_ins_lines[block_nr].extend([ht_nr + 'o' + ht_list[nr - 1], ht_nr + 'o'])

constructInsulationGeometry()

Generates points, hyper lines, and curve loops for the coil insulations

Source code in fiqus/geom_generators/GeometryMultipole.py
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
def constructInsulationGeometry(self):
    """
        Generates points, hyper lines, and curve loops for the coil insulations
    """
    def _createMidPoleLines(case, cnt=0):
        if 'block-coil' in geom_coil.type:
            if case == 'inner':
                group.lines['mid_pole_' + case[0]] = self.occ.addLine(ins_pnt[first_ht_curr + case[0] + 'l'], ins_pnt_opposite[last_ht_prev + case[0] + 'h'])
                ordered_lines[group_nr].append(['mid_pole_' + case[0], (len(coil.layers) * 2) * 1e3 + 5e2, group.lines['mid_pole_' + case[0]]])
            else:
                group.lines['mid_pole_' + case[0]] = self.occ.addLine(ins_pnt[last_ht_curr + 'ih'], ins_pnt_opposite[first_ht_prev + 'il'])
                ordered_lines[group_nr].append(['mid_pole_' + case[0], 0, group.lines['mid_pole_' + case[0]]])
        else:
            ht_curr = geom_coil.poles[block_order.pole].layers[layer_nr].windings[block_order.winding].blocks[
                block_order.block].half_turns[int(first_ht_curr)].corners.insulated
            ht_prev = geom_coil.poles[block_order_prev.pole].layers[layer_nr].windings[block_order_prev.winding].blocks[
                block_order_prev.block].half_turns[int(last_ht_prev)].corners.insulated
            pnt_curr = [ht_curr.iL.x, ht_curr.iL.y] if case == 'inner' else [ht_curr.oL.x, ht_curr.oL.y]
            pnt_prev = [ht_prev.iH.x, ht_prev.iH.y] if case == 'inner' else [ht_prev.oH.x, ht_prev.oH.y]
            if Func.points_distance(pnt_curr, pnt_prev) > 1e-6:
                correct_center = Func.corrected_arc_center([self.md.geometries.coil.coils[coil_nr].bore_center.x, self.md.geometries.coil.coils[coil_nr].bore_center.y],
                                                           [ht_curr.iL.x, ht_curr.iL.y] if case == 'inner' else [ht_curr.oL.x, ht_curr.oL.y],
                                                           [ht_prev.iH.x, ht_prev.iH.y] if case == 'inner' else [ht_prev.oH.x, ht_prev.oH.y])
                ln_name = 'mid_pole_' + str(block_order_prev.block) + '_' + str(block_order.block) + '_' + case[0]
                group.lines[ln_name] = self.occ.addCircleArc(ins_pnt[first_ht_curr + case[0] + 'l'],
                                                             self.occ.addPoint(correct_center[0], correct_center[1], 0),
                                                             ins_pnt_opposite[last_ht_prev + case[0] + 'h'])
                # self.occ.addLine(ins_pnt[first_ht_curr + case[0] + 'l'], ins_pnt_opposite[last_ht_prev + case[0] + 'h'])
                cnt += 1 if case == 'inner' else -1
                ordered_lines[group_nr].append([ln_name, cnt, group.lines[ln_name]])
            return cnt

    def _createMidWindingLines(case, cnt):
        name = 'mid_wind_' + str(block_order_prev.block) + '_' + str(block_order.block) + '_' + case[0]
        # Create corrected center
        blk1 = self.geom.coil.coils[coil_nr].poles[blks_info[str(block_order.block)][0]].layers[
            blks_info[str(block_order.block)][1]].windings[blks_info[str(block_order.block)][2]].blocks[int(str(block_order.block))]
        blk2 = self.geom.coil.coils[coil_nr].poles[blks_info[str(block_order_prev.block)][0]].layers[
            blks_info[str(block_order_prev.block)][1]].windings[blks_info[str(block_order_prev.block)][2]].blocks[int(block_order_prev.block)]
        pnt1 = blk1.half_turns[int(first_ht_curr)].corners.insulated.iL if case == 'inner' else blk1.half_turns[int(first_ht_curr)].corners.insulated.oL
        pnt2 = blk2.half_turns[int(last_ht_prev)].corners.insulated.iH if case == 'inner' else blk2.half_turns[int(last_ht_prev)].corners.insulated.oH
        outer_center = Func.corrected_arc_center([self.md.geometries.coil.coils[coil_nr].bore_center.x,
                                                  self.md.geometries.coil.coils[coil_nr].bore_center.y],
                                                 [pnt1.x, pnt1.y], [pnt2.x, pnt2.y])
        group.lines[name] = self.occ.addCircleArc(ins_pnt[first_ht_curr + case[0] + 'l'],
                                                  self.occ.addPoint(outer_center[0], outer_center[1], 0), ins_pnt_opposite[last_ht_prev + case[0] + 'h'])
        cnt += 1 if case == 'inner' else -1
        ordered_lines[group_nr].append([name, cnt, group.lines[name]])
        return cnt

    def _createInnerOuterLines(case, cnt):
        # Create half turn lines
        idxs = [1, round(len(self.blk_ins_lines[block_order.block]) / 2), 1] if case == 'inner'\
            else [len(self.blk_ins_lines[block_order.block]) - 1, round(len(self.blk_ins_lines[block_order.block]) / 2), -1]
        lns = self.blk_ins_lines[block_order.block][idxs[0]:idxs[1]:idxs[2]]
        for ln_nr, ln_name in enumerate(lns):
            skip_cnt = False
            if ln_name[-1].isdigit():
                try:
                    group.lines[ln_name] = self.occ.addLine(ins_pnt[ln_name[:ln_name.index(case[0])] + case[0] + 'h'],
                                                            ins_pnt[ln_name[ln_name.index(case[0]) + 1:] + case[0] + 'l'])
                except:
                    skip_cnt = True
                    next_line = lns[ln_nr + 1]
                    pos = 'first' if next_line[:-1] == ln_name[:ln_name.index(case[0])] else 'second'
                    lns[ln_nr + 1] = next_line + (ln_name[ln_name.index(case[0]) + 1:] + 'l' if pos == 'first' else ln_name[:ln_name.index(case[0])] + 'h')
            elif ln_name[-1] in ['i', 'o']:
                group.lines[ln_name] = self.occ.addLine(ins_pnt[ln_name + 'l'], ins_pnt[ln_name + 'h'])
            else:
                group.lines[ln_name] = self.occ.addLine(ins_pnt[ln_name[:ln_name.index(case[0])] + case[0] + ln_name[-1]],
                                                        ins_pnt[ln_name[ln_name.index(case[0]) + 1:-1] + case[0] + ln_name[-1]])
            if not skip_cnt:
                cnt += 1 if case == 'inner' else -1
                ordered_lines[group_nr].append([ln_name, cnt, group.lines[ln_name]])
        return cnt

    def _computePointAngle(case):
        points_angles = pa_next if case == 'outer' else pa_prev
        current_ht_h = [current_ht.oH.x, current_ht.oH.y] if case == 'outer' else [current_ht.iH.x, current_ht.iH.y]
        if ht_nr == 0:
            current_ht_l = [current_ht.oL.x, current_ht.oL.y] if case == 'outer' else [current_ht.iL.x, current_ht.iL.y]
            if 'block-coil' in geom_coil.type: current_ht_l[1] = 1 if current_ht_l[1] > 0 else -1
            points_angles[str(block_order.block) + '_' + ht_name + 'l'] = Func.arc_angle_between_point_and_abscissa(current_ht_l, center)
        if ht_nr == len(ht_list) - 1:
            name = ht_name + 'h'
            coord = current_ht_h
        else:  # for mid half turns, get the outer corner
            next_ht_ins = geom_hts[int(ht_list[ht_nr + 1])].corners.insulated
            next_ht = [next_ht_ins.oL.x, next_ht_ins.oL.y] if case == 'outer' else [next_ht_ins.iL.x, next_ht_ins.iL.y]
            condition = (Func.points_distance(current_ht_h, center) > Func.points_distance(next_ht, center))\
                if case == 'outer' else (Func.points_distance(current_ht_h, center) < Func.points_distance(next_ht, center))
            if condition:
                name = ht_name + 'h'
                coord = current_ht_h
            else:
                name = ht_list[ht_nr + 1] + 'l'
                coord = next_ht
        if 'block-coil' in geom_coil.type: coord[1] = 1 if coord[1] > 0 else -1
        points_angles[str(block_order.block) + '_' + name] = Func.arc_angle_between_point_and_abscissa(coord, center)

    ins = self.md.geometries.insulation
    for coil_nr, coil in self.md.geometries.coil.anticlockwise_order.coils.items():
        aux_coil = self.md.geometries.coil.coils[coil_nr]
        geom_coil = self.geom.coil.coils[coil_nr]
        groups = len(geom_coil.poles)
        count = {}
        ordered_lines = {}
        points_angle = {}
        blks_info = {}
        ending_line = {}
        center = [geom_coil.bore_center.x, geom_coil.bore_center.y]
        if coil_nr not in ins.coils:
            ins.coils[coil_nr] = dM.InsulationGroup()
        ins_groups = ins.coils[coil_nr].group
        for layer_nr, layer in coil.layers.items():
            group_nr = 1
            wnd_nr = len(aux_coil.poles[1].layers[layer_nr].windings)
            ordered_layer = layer[wnd_nr:] + layer[:wnd_nr] if layer[0].pole != layer[-1].pole else layer
            for nr, block_order in enumerate(ordered_layer):
                blks_info[str(block_order.block)] = [block_order.pole, layer_nr, block_order.winding]
                # Get previous block in anticlockwise order
                block_order_prev = ordered_layer[-1] if nr == 0 else ordered_layer[nr - 1]
                # Update insulation group
                if block_order.winding == block_order_prev.winding:
                    group_nr = group_nr + 1 if group_nr < groups else 1
                # Initialize dicts
                if group_nr not in ins_groups:
                    ins_groups[group_nr] = dM.InsulationRegion()
                    points_angle[group_nr] = {}
                    ordered_lines[group_nr] = []
                    count[group_nr] = [0, (len(coil.layers) + 1) * 1e3]
                group = ins_groups[group_nr].ins
                ins_groups[group_nr].blocks.append([block_order.pole, layer_nr, block_order.winding, block_order.block])
                # Find the wedge
                if block_order.pole == block_order_prev.pole and block_order.winding != block_order_prev.winding:
                    for wdg, blk in self.md.geometries.wedges.coils[coil_nr].layers[layer_nr].block_prev.items():
                        if blk == block_order_prev.block:
                            ins_groups[group_nr].wedges.append([layer_nr, wdg])
                            break
                if layer_nr < len(coil.layers):
                    mid_layer_next = str(layer_nr) + '_' + str(layer_nr + 1)
                    if mid_layer_next not in points_angle[group_nr]:
                        points_angle[group_nr][mid_layer_next] = {}
                    pa_next = points_angle[group_nr][mid_layer_next]
                if layer_nr > 1:
                    mid_layer_prev = str(layer_nr - 1) + '_' + str(layer_nr)
                    pa_prev = points_angle[group_nr][mid_layer_prev]
                # Get point tags of insulation
                ins_pnt = aux_coil.poles[block_order.pole].layers[layer_nr].windings[block_order.winding].blocks[
                    block_order.block].insulation.points
                # Get relevant info for line names
                first_ht_curr = self.blk_ins_lines[block_order.block][1][:-1]
                last_ht_prev = list(aux_coil.poles[block_order_prev.pole].layers[
                    layer_nr].windings[block_order_prev.winding].blocks[block_order_prev.block].half_turns.areas.keys())[-1]
                ins_pnt_opposite = aux_coil.poles[block_order_prev.pole].layers[
                    layer_nr].windings[block_order_prev.winding].blocks[block_order_prev.block].insulation.points
                if 'cos-theta' == geom_coil.type:
                    # Create lower and higher angle lines
                    if block_order.winding == block_order_prev.winding:
                        group.lines[str(layer_nr) + 'l'] = self.occ.addLine(ins_pnt[first_ht_curr + 'il'], ins_pnt[first_ht_curr + 'ol'])
                        ordered_lines[group_nr].append([str(layer_nr) + 'l', (len(coil.layers) * 2 - layer_nr + 1) * 1e3, group.lines[str(layer_nr) + 'l']])
                        ending_line[group_nr - 1 if group_nr > 1 else groups] =\
                            [ins_pnt_opposite[last_ht_prev + 'ih'], ins_pnt_opposite[last_ht_prev + 'oh']]
                    # Create inner lines of insulation group
                    if layer_nr == 1:
                        if block_order.pole != block_order_prev.pole:
                            count[group_nr][0] = _createMidPoleLines('inner', count[group_nr][0])
                        if block_order.pole == block_order_prev.pole and block_order.winding != block_order_prev.winding:
                            count[group_nr][0] = _createMidWindingLines('inner', count[group_nr][0])
                        count[group_nr][0] = _createInnerOuterLines('inner', count[group_nr][0])
                    # Create outer lines of insulation group
                    if layer_nr == len(coil.layers):
                        if block_order.pole != block_order_prev.pole:
                            count[group_nr][1] = _createMidPoleLines('outer', count[group_nr][1])
                        if block_order.pole == block_order_prev.pole and block_order.winding != block_order_prev.winding:
                            count[group_nr][1] = _createMidWindingLines('outer', count[group_nr][1])
                        count[group_nr][1] = _createInnerOuterLines('outer', count[group_nr][1])
                elif 'block-coil' in geom_coil.type:
                    last_ht_curr = self.blk_ins_lines[block_order.block][self.blk_ins_lines[block_order.block].index('h') - 1][:-1]
                    first_ht_prev = list(aux_coil.poles[block_order_prev.pole].layers[layer_nr].windings[
                                             block_order_prev.winding].blocks[block_order_prev.block].half_turns.areas.keys())[0]
                    # Create lower and higher angle lines
                    if block_order.winding == block_order_prev.winding:
                        group.lines[str(layer_nr) + 'l'] = self.occ.addLine(ins_pnt[first_ht_curr + 'il'], ins_pnt[first_ht_curr + 'ol'])
                        ordered_lines[group_nr].append([str(layer_nr) + 'l', (len(coil.layers) * 4 - layer_nr + 1) * 1e3, group.lines[str(layer_nr) + 'l']])
                        ending_line[group_nr - 1 if group_nr > 1 else groups] =\
                            [ins_pnt_opposite[last_ht_prev + 'ih'], ins_pnt_opposite[last_ht_prev + 'oh']]
                        group.lines[str(layer_nr) + 'bh'] = self.occ.addLine(ins_pnt[last_ht_curr + 'ih'], ins_pnt[last_ht_curr + 'oh'])
                        ordered_lines[group_nr].append([str(layer_nr) + 'bh', (len(coil.layers) * 2 + layer_nr) * 1e3, group.lines[str(layer_nr) + 'bh']])
                    # Create inner lines of insulation group
                    if block_order.pole != block_order_prev.pole:
                        if layer_nr == 1:
                            _createMidPoleLines('inner')
                            _createMidPoleLines('outer')
                        group.lines[str(layer_nr) + 'bl'] = self.occ.addLine(ins_pnt[first_ht_curr + 'il'], ins_pnt[first_ht_curr + 'ol'])
                        ordered_lines[group_nr].append([str(layer_nr) + 'bl', (len(coil.layers) * 2 - layer_nr + 1) * 1e3, group.lines[str(layer_nr) + 'bl']])
                    # Create outer lines of insulation group
                    if layer_nr == len(coil.layers):
                        count[group_nr][1] = _createInnerOuterLines(
                            'outer', (len(coil.layers) * 4 - layer_nr + 1) * 1e3 if block_order.winding == block_order_prev.winding else (len(coil.layers) + 1) * 1e3)
                # Store info about the angle of each point in between layers
                ht_list = list(aux_coil.poles[block_order.pole].layers[
                    layer_nr].windings[block_order.winding].blocks[block_order.block].half_turns.areas.keys())
                geom_hts = geom_coil.poles[block_order.pole].layers[
                    layer_nr].windings[block_order.winding].blocks[block_order.block].half_turns
                for ht_nr, ht_name in enumerate(ht_list):  # half turns in anticlockwise order
                    current_ht = geom_hts[int(ht_name)].corners.insulated
                    if layer_nr < len(coil.layers):  # if it's not the last layer, fetch all outer corners angles
                        _computePointAngle('outer')
                    if layer_nr > 1:  # if it's not the first layer, fetch all inner corners angles
                        _computePointAngle('inner')
            # Create closing lines
            for grp_nr, grp in ending_line.items():
                ins_groups[grp_nr].ins.lines[str(layer_nr) + 'h'] = self.occ.addLine(grp[0], grp[1])
                ordered_lines[grp_nr].append([str(layer_nr) + 'h', layer_nr * 1e3, ins_groups[grp_nr].ins.lines[str(layer_nr) + 'h']])
        # Create lines connecting different layers and generate closed loops
        for group_nr, group in points_angle.items():
            ins_group = ins_groups[group_nr].ins
            for mid_l_name, mid_l in group.items():
                first_layer = mid_l_name[:mid_l_name.index('_')]
                # Correct angles if the group crosses the abscissa
                max_angle = max(mid_l.values())
                max_diff = max_angle - min(mid_l.values())
                if max_diff > np.pi:
                    for pnt_name, angle in mid_l.items():
                        if angle < max_diff / 2:
                            mid_l[pnt_name] = angle + max_angle
                # Order points according to angle
                ordered_pnts = [[pnt_name, angle] for pnt_name, angle in mid_l.items()]
                ordered_pnts.sort(key=lambda x: x[1])
                ordered_names = [x[0] for x in ordered_pnts]
                for case in ['beg', 'end']:
                    past_blocks = []
                    sides = ['l', 'o', 'h', 'l'] if case == 'beg' else ['h', 'i', 'l', 'h']
                    # count = int(first_layer) * 1e3 + 5e2 if case == 'end' else (len(coil.layers) * 2 - int(first_layer)) * 1e3 + 5e2
                    for i in range(2 if 'block-coil' in geom_coil.type else 1):
                        count = int(first_layer) * 1e3 + 5e2 if i == 0 else (len(coil.layers) * 2 + int(first_layer)) * 1e3 + 5e2
                        if case == 'beg':
                            pnt_position = 0 if i == 0 else int(len(ordered_names) / 2)
                        else:
                            pnt_position = -1 if i == 0 else int(len(ordered_names) / 2 - 1)
                        first_block = ordered_names[pnt_position][:ordered_names[pnt_position].index('_')]  # ordered_pnts[pnt_position][0][:ordered_pnts[pnt_position][0].index('_')] #
                        ordered_search_names = ordered_names[pnt_position::1 if case == 'beg' else -1]
                        for nr, pnt in enumerate(ordered_search_names[1:], 1):  # enumerate(ordered_names if case == 'beg' else reversed(ordered_names)):  #
                            current_blk = pnt[:pnt.index('_')]
                            ins_pnt = aux_coil.poles[blks_info[current_blk][0]].layers[blks_info[current_blk][1]].windings[
                                blks_info[current_blk][2]].blocks[int(current_blk)].insulation.points
                            prev_pnt = ordered_search_names[nr - 1]  # ordered_pnts[nr - 1 if case == 'beg' else - nr][0] #
                            prev_blk = prev_pnt[:prev_pnt.index('_')]
                            start_pnt_name = prev_pnt[prev_pnt.index('_') + 1:-1] + ('o' if str(blks_info[prev_blk][1]) == first_layer else 'i')
                            ins_pnt_prev = aux_coil.poles[blks_info[prev_blk][0]].layers[blks_info[prev_blk][1]].windings[
                                blks_info[prev_blk][2]].blocks[int(prev_blk)].insulation.points
                            # Create lines when you find the first edge belonging to a block of the opposite layer
                            if blks_info[current_blk][1] != blks_info[first_block][1]:
                                pnt_tag_name = pnt[pnt.index('_') + 1:-1] + ('o' if str(blks_info[current_blk][1]) == first_layer else 'i') + ('l' if pnt[-1] == 'l' else 'h')
                                pnt_tag_name_opposite = start_pnt_name + ('l' if prev_pnt[-1] == 'l' else 'h')
                                opp_blk_ins_lines = self.blk_ins_lines[int(prev_blk)]
                                indexes = [opp_blk_ins_lines.index(start_pnt_name) + (1 if prev_pnt[-1] == sides[0] else 0),
                                           len(opp_blk_ins_lines) if case == 'beg' else opp_blk_ins_lines.index('h'), 1] if start_pnt_name[-1] == sides[1]\
                                    else [opp_blk_ins_lines.index(start_pnt_name) - (1 if prev_pnt[-1] == sides[0] else 0),
                                          0 if case == 'beg' else opp_blk_ins_lines.index('h'), -1]
                                if case == 'beg':
                                    if i == 0:
                                        count = (len(coil.layers) * (4 if 'block-coil' in geom_coil.type else 2) - int(first_layer)) * 1e3 + 5e2 - abs(indexes[0] - indexes[1])
                                    else:
                                        count = (len(coil.layers) * 2 - int(first_layer)) * 1e3 + 5e2 - abs(indexes[0] - indexes[1])
                                else:
                                    count += 1 + abs(indexes[0] - indexes[1])
                                # Create all remaining lines of the current layer block
                                for line_name in opp_blk_ins_lines[indexes[0]:indexes[1]:indexes[2]]:
                                    if 'block-coil' in geom_coil.type:
                                        if not line_name[-1].isdigit():
                                            ins_group.lines[line_name] = self.occ.addLine(ins_pnt_prev[line_name + 'l'], ins_pnt_prev[line_name + 'h'])
                                            count += 1 if (case == 'beg' and i == 1) or (case == 'end' and i == 0) else -1
                                            ordered_lines[group_nr].append([line_name, count, ins_group.lines[line_name]])
                                    else:
                                        if line_name[-1].isdigit():
                                            ins_group.lines[line_name] = self.occ.addLine(
                                                ins_pnt_prev[line_name[:line_name.index(start_pnt_name[-1])] + start_pnt_name[-1] + 'h'],
                                                ins_pnt_prev[line_name[line_name.index(start_pnt_name[-1]) + 1:] + start_pnt_name[-1] + 'l'])
                                        else:
                                            ins_group.lines[line_name] = self.occ.addLine(ins_pnt_prev[line_name + 'l'], ins_pnt_prev[line_name + 'h'])
                                        count += 1 if case == 'beg' else -1  # if start_pnt_name[-1] == sides[1] else 1
                                        ordered_lines[group_nr].append([line_name, count, ins_group.lines[line_name]])
                                # Create mid layer line
                                if 'block-coil' in geom_coil.type:
                                    count_rest = -abs(indexes[0] - indexes[1]) if (case == 'beg' and i == 1) or (case == 'end' and i == 0) else 1 + abs(indexes[0] - indexes[1])
                                else:
                                    count_rest = -abs(indexes[0] - indexes[1]) if case == 'beg' else 1 + abs(indexes[0] - indexes[1])

                                line_name = 'mid_layer_' + mid_l_name + ('b' if i == 1 else '') + (
                                    '_l' if case == 'beg' else '_h')

                                gmsh.model.occ.synchronize()
                                """
                                The line that connects two layers may overlap with a new (pole) region. This can be avoided by 
                                modifying the line to be an L shape by adding an intermediate point.
                                We add the point along the upper half-turn radial direction towards the center.
                                """
                                p = ins_pnt[pnt_tag_name]  # point to be extended
                                linetag = gmsh.model.getAdjacencies(0, ins_pnt[pnt_tag_name])[0][0]  # line to be extended
                                # find the distance to move the point towards the center
                                coord1 = gmsh.model.getValue(0, p, [])
                                coord2 = gmsh.model.getValue(0, ins_pnt_prev[pnt_tag_name_opposite], [])
                                # this is the
                                r1 = np.sqrt(coord1[0] ** 2 + coord1[1] ** 2)
                                r2 = np.sqrt(coord2[0] ** 2 + coord2[1] ** 2)
                                distance = (r1 - r2) / 2

                                p1, p2 = [b[1] for b in gmsh.model.getBoundary([(1, linetag)], oriented=True)]
                                dir_vector = gmsh.model.getValue(0, p1, [])-gmsh.model.getValue(0, p2, [])
                                unit_vector = dir_vector / np.linalg.norm(dir_vector)
                                coord = gmsh.model.getValue(0, p, [])
                                X = self.occ.addPoint(
                                    coord[0] + unit_vector[0] * distance,
                                    coord[1] + unit_vector[1] * distance,
                                    0)
                                gmsh.model.occ.synchronize()

                                ins_group.lines[line_name + "_A"] = self.occ.addLine(ins_pnt[pnt_tag_name], X)
                                ins_group.lines[line_name + "_B"] = self.occ.addLine(X, ins_pnt_prev[pnt_tag_name_opposite])

                                ordered_lines[group_nr].append(
                                    [line_name+"_A", count + count_rest -1 if case == 'beg' else count + count_rest, ins_group.lines[line_name+"_A"]])
                                ordered_lines[group_nr].append(
                                    [line_name+"_B", count + count_rest if case == 'beg' else count + count_rest -1, ins_group.lines[line_name+"_B"]])

                                """ # original code
                                line_name = 'mid_layer_' + mid_l_name + ('b' if i == 1 else '') + ('_l' if case == 'beg' else '_h')
                                ins_group.lines[line_name] = self.occ.addLine(ins_pnt[pnt_tag_name], ins_pnt_prev[pnt_tag_name_opposite])
                                ordered_lines[group_nr].append([line_name, count + count_rest, ins_group.lines[line_name]])
                                """
                                break
                            # Create all edges of the first block sticking out completely todo: might have to be extended to multiple blocks
                            if current_blk != first_block and current_blk not in past_blocks:
                                def __createWedgeInsulation(cnt):
                                    # Create the line connecting the blocks (where a wedge is)
                                    line_name = self.blk_ins_lines[int(current_blk)][
                                        (-1 if start_pnt_name[-1] == 'o' else 1) if case == 'beg'
                                        else (round(len(self.blk_ins_lines[int(current_blk)]) / 2) + (1 if start_pnt_name[-1] == 'o' else -1))]
                                    line_name_prev = self.blk_ins_lines[int(prev_blk)][
                                        (round(len(self.blk_ins_lines[int(prev_blk)]) / 2) + (1 if start_pnt_name[-1] == 'o' else -1)) if case == 'beg'
                                        else (-1 if start_pnt_name[-1] == 'o' else 1)]
                                    # Create corrected center
                                    blk1 = geom_coil.poles[blks_info[prev_blk][0]].layers[
                                        blks_info[prev_blk][1]].windings[blks_info[prev_blk][2]].blocks[int(prev_blk)]
                                    blk2 = geom_coil.poles[blks_info[current_blk][0]].layers[
                                        blks_info[current_blk][1]].windings[blks_info[current_blk][2]].blocks[int(current_blk)]
                                    pnt1 = blk1.half_turns[int(line_name_prev[:-1])].corners.insulated.oH if case == 'beg'\
                                        else blk1.half_turns[int(line_name_prev[:-1])].corners.insulated.oL
                                    pnt2 = blk2.half_turns[int(line_name[:-1])].corners.insulated.oL if case == 'beg'\
                                        else blk2.half_turns[int(line_name[:-1])].corners.insulated.oH
                                    outer_center = Func.corrected_arc_center([aux_coil.bore_center.x, aux_coil.bore_center.y],
                                                                             [pnt2.x, pnt2.y] if case == 'beg' else [pnt1.x, pnt1.y],
                                                                             [pnt1.x, pnt1.y] if case == 'beg' else [pnt2.x, pnt2.y])
                                    ins_group.lines[line_name_prev + line_name] =\
                                        self.occ.addCircleArc(ins_pnt_prev[line_name_prev + sides[2]],
                                                              self.occ.addPoint(outer_center[0], outer_center[1], 0), ins_pnt[line_name + sides[3]])
                                    ordered_lines[group_nr].append([line_name_prev + line_name, cnt, ins_group.lines[line_name_prev + line_name]])

                                count = int(first_layer) * 1e3 + 5e2 if case == 'end' else (len(coil.layers) * 2 - int(first_layer)) * 1e3 + 5e2
                                past_blocks.append(current_blk)
                                indexes = [round(len(self.blk_ins_lines[int(prev_blk)]) / 2) + 1,
                                           len(self.blk_ins_lines[int(prev_blk)])] if str(blks_info[prev_blk][1]) == first_layer\
                                    else [1, round(len(self.blk_ins_lines[int(prev_blk)]) / 2)]
                                if case == 'beg':
                                    count += 1
                                    __createWedgeInsulation(count)
                                lines = self.blk_ins_lines[int(prev_blk)][indexes[0]:indexes[1]]
                                side = 'o' if str(blks_info[prev_blk][1]) == first_layer else 'i'
                                for line_nr, line_name in enumerate(lines):
                                    skip_count = False
                                    if line_name[-1].isdigit():
                                        try:
                                            ins_group.lines[line_name] =\
                                                self.occ.addLine(ins_pnt_prev[line_name[line_name.index(start_pnt_name[-1]) + 1:] + start_pnt_name[-1] + 'l'],
                                                                 ins_pnt_prev[line_name[:line_name.index(start_pnt_name[-1])] + start_pnt_name[-1] + 'h'])
                                        except:  # points are too close to each other
                                            skip_count = True
                                            next_line = lines[line_nr + 1]
                                            pnt1, pnt2 = line_name.split(side)
                                            pos = 'first' if next_line[:-1] == pnt1 else 'second'
                                            lines[line_nr + 1] = next_line + (pnt2 + 'l' if pos == 'first' else pnt1 + 'h')
                                    elif line_name[-1] in ['i', 'o']:
                                        ins_group.lines[line_name] = self.occ.addLine(ins_pnt_prev[line_name + 'h'], ins_pnt_prev[line_name + 'l'])
                                    else:
                                        ins_group.lines[line_name] = self.occ.addLine(ins_pnt_prev[line_name[:line_name.index(side)] + side + line_name[-1]],
                                                                                      ins_pnt_prev[line_name[line_name.index(side) + 1:-1] + side + line_name[-1]])
                                    if not skip_count:
                                        count += 1  # if start_pnt_name[-1] == sides[1] else -1
                                        ordered_lines[group_nr].append([line_name, count, ins_group.lines[line_name]])
                                if case == 'end':
                                    count += 1
                                    __createWedgeInsulation(count)

            # Generate closed loops
            ordered_lines[group_nr].sort(key=lambda x: x[1])
            area_name = str((coil_nr - 1) * len(ins_groups) + group_nr)
            ins_group.areas[area_name] = dM.Area()
            if len(points_angle) == 1:
                ins_group.areas['inner_loop'] = dM.Area(loop=self.occ.addCurveLoop([ins_group.lines[line] for line in [x[0] for x in ordered_lines[group_nr]]
                                                                                    if 'i' in line and line[0].isdigit() or '_i' in line]))
                ins_group.areas[area_name].loop = self.occ.addCurveLoop([ins_group.lines[line] for line in [x[0] for x in ordered_lines[group_nr]]
                                                                             if 'o' in line and line[0].isdigit() or '_o' in line])
            else:
                ins_group.areas[area_name].loop = self.occ.addCurveLoop([ins_group.lines[line] for line in [x[0] for x in ordered_lines[group_nr]]])

constructIronGeometry(symmetry, geometry_setting, run_type)

Generates points, hyper lines, and curve loops for the iron yoke

Source code in fiqus/geom_generators/GeometryMultipole.py
def constructIronGeometry(self, symmetry, geometry_setting, run_type):
    """
        Generates points, hyper lines, and curve loops for the iron yoke
    """
    iron = self.geom.iron #roxie

    if symmetry == 'xy':
        self.md.geometries.iron.quadrants = {1: dM.Region()}
        list_bnds = ['x_p', 'y_p']
    elif symmetry == 'x':
        self.md.geometries.iron.quadrants = {1: dM.Region(), 2: dM.Region()}
        list_bnds = ['x_p', 'x_n']
    elif symmetry == 'y':
        self.md.geometries.iron.quadrants = {1: dM.Region(), 4: dM.Region()}
        list_bnds = ['y_p', 'y_n']
    else:
        for k in self.nc.keys(): getattr(self.md.geometries, k).quadrants = {1: dM.Region(), 2: dM.Region(), 4: dM.Region(), 3: dM.Region()}
        list_bnds = []

    lc = 1e-2
    geom_dict = self.create_geom_dict(geometry_setting)

    for point_name, point in iron.key_points.items():
        identifier = next((k for k in self.inv_nc.keys() if re.match(f'^{k}', point_name[2:])), None)
        if not geom_dict.get(identifier, False): continue
        quadrants = getattr(self.md.geometries, self.inv_nc[identifier]).quadrants #re.sub(r'\d+', '', point_name[2:])
        if symmetry in ['x', 'xy']:
            if point.y == 0.:
                self.symmetric_bnds['x_p']['pnts'].append([point_name, point.x])
        if symmetry in ['y', 'xy']:
            if point.x == 0.:
                self.symmetric_bnds['y_p']['pnts'].append([point_name, point.y])
        quadrants[1].points[point_name] = self.occ.addPoint(point.x, point.y, 0, lc)
        if symmetry in ['x', 'none']:
            if point.x == 0.:
                quadrants[2].points[point_name] = quadrants[1].points[point_name]
            else:
                quadrants[2].points[point_name] = self.occ.copy([(0, quadrants[1].points[point_name])])[0][1]
                self.occ.mirror([(0, quadrants[2].points[point_name])], 1, 0, 0, 0)
                if point.y == 0. and symmetry == 'x':
                    self.symmetric_bnds['x_n']['pnts'].append([point_name, point.x])
        if symmetry in ['y', 'none']:
            if point.y == 0.:
                quadrants[4].points[point_name] = quadrants[1].points[point_name]
            else:
                quadrants[4].points[point_name] = self.occ.copy([(0, quadrants[1].points[point_name])])[0][1]
                self.occ.mirror([(0, quadrants[4].points[point_name])], 0, 1, 0, 0)
                if point.x == 0. and symmetry == 'y':
                    self.symmetric_bnds['y_n']['pnts'].append([point_name, point.y])
        if symmetry == 'none':
            if point.y == 0.:
                quadrants[3].points[point_name] = quadrants[2].points[point_name]
            elif point.x == 0.:
                quadrants[3].points[point_name] = quadrants[4].points[point_name]
            else:
                quadrants[3].points[point_name] = self.occ.copy([(0, quadrants[2].points[point_name])])[0][1]
                self.occ.mirror([(0, quadrants[3].points[point_name])], 0, 1, 0, 0)

    mirror_x = [1, -1, -1, 1]
    mirror_y = [1, 1, -1, -1]
    symmetric_bnds_order = {'x': [], 'y': []}
    sym_lines_tags = {'x_p': [], 'y_p': [], 'x_n': [], 'y_n': []}
    for line_name, line in iron.hyper_lines.items():
        identifier = next((k for k in self.inv_nc.keys() if re.match(f'^{k}', line_name[2:])), None)
        if not geom_dict.get(identifier, False): continue
        quadrants = getattr(self.md.geometries, self.inv_nc[identifier]).quadrants #re.sub(r'\d+', '', line_name[2:])
        pt1 = iron.key_points[line.kp1]
        pt2 = iron.key_points[line.kp2]
        if line.type == 'line':
            for quadrant, qq in quadrants.items():
                if quadrant == 1:
                    qq.lines[line_name] = self.occ.addLine(qq.points[line.kp1], qq.points[line.kp2])
                    if pt1.y == 0. and pt2.y == 0. and 'x_p' in list_bnds:
                        self.symmetric_bnds['x_p']['line_pnts'].append(line.kp1 + '_' + line.kp2)
                        sym_lines_tags['x_p'].append(qq.lines[line_name])
                        symmetric_bnds_order['x'].append(min(pt1.x, pt2.x))
                    elif pt1.x == 0. and pt2.x == 0. and 'y_p' in list_bnds:
                        self.symmetric_bnds['y_p']['line_pnts'].append(line.kp1 + '_' + line.kp2)
                        sym_lines_tags['y_p'].append(qq.lines[line_name])
                        symmetric_bnds_order['y'].append(min(pt1.y, pt2.y))
                elif quadrant == 2:
                    if pt1.x == 0. and pt2.x == 0.:
                        qq.lines[line_name] = quadrants[1].lines[line_name]
                    else:
                        qq.lines[line_name] = self.occ.addLine(qq.points[line.kp1], qq.points[line.kp2])
                        if pt1.y == 0. and pt2.y == 0. and 'x_n' in list_bnds:
                            self.symmetric_bnds['x_n']['line_pnts'].append(line.kp1 + '_' + line.kp2)
                            sym_lines_tags['x_n'].append(qq.lines[line_name])
                elif quadrant == 4:
                    if pt1.y == 0. and pt2.y == 0.:
                        qq.lines[line_name] = quadrants[1].lines[line_name]
                    else:
                        qq.lines[line_name] = self.occ.addLine(qq.points[line.kp1], qq.points[line.kp2])
                        if pt1.x == 0. and pt2.x == 0. and 'y_n' in list_bnds:
                            self.symmetric_bnds['y_n']['line_pnts'].append(line.kp1 + '_' + line.kp2)
                            sym_lines_tags['y_n'].append(qq.lines[line_name])
                else:  # 3
                    if pt1.y == 0. and pt2.y == 0.:
                        qq.lines[line_name] = quadrants[2].lines[line_name]
                    elif pt1.x == 0. and pt2.x == 0.:
                        qq.lines[line_name] = quadrants[4].lines[line_name]
                    else:
                        qq.lines[line_name] = self.occ.addLine(qq.points[line.kp1], qq.points[line.kp2])

        elif line.type == 'arc':
            center = Func.arc_center_from_3_points([pt1.x, pt1.y],
                                                   [iron.key_points[line.kp3].x, iron.key_points[line.kp3].y],
                                                   [pt2.x, pt2.y])
            new_point_name = 'kp' + line_name + '_center'
            arc_coordinates1 = (pt1.x, pt1.y)
            arc_coordinates2 = (pt2.x, pt2.y)
            arc_coordinates3 = (iron.key_points[line.kp3].x, iron.key_points[line.kp3].y)

            # This code addresses a meshing error in MQXA and MB_2COILS that occurs when an arc is defined on any of
            # the axes. The issue arises because the function Func.arc_center_from_3_points does not return exactly
            # zero but a value with a magnitude of approximately 10^-17 when the two points are placed on the axes.
            # Consequently, when using the method self.occ.addCircleArc(), which only takes in three points without
            # specifying a direction, a problem arises. The addCircleArc() function always creates the arc with the
            # smallest angle. However, since center point can be slightly above or below the axis, the arc can
            # inadvertently be drawn in the wrong quadrant, leading to an incorrect result.
            # -----------------------
            # Check that arcs with points on the x-axis are drawn in the first quadrant
            if arc_coordinates3[1] > 0 and arc_coordinates2[1] == 0 and arc_coordinates1[1] == 0 and center[1] > 0:
                quadrants[1].points[new_point_name] = self.occ.addPoint(center[0], -center[1], 0)
            # Check that arcs with points on the y-axis are drawn in the first quadrant
            elif arc_coordinates3[0] > 0 and arc_coordinates2[0] == 0 and arc_coordinates1[0] == 0 and center[0] > 0:
                quadrants[1].points[new_point_name] = self.occ.addPoint(-center[0], center[1], 0)
            else:
                quadrants[1].points[new_point_name] = self.occ.addPoint(center[0], center[1], 0)
            # -----------------------
            # gmsh.model.setEntityName(0, gm.iron.quadrants[1].points[new_point_name], 'iron_' + new_point_name)
            if symmetry in ['x', 'none']:
                if center[0] == 0.:
                    quadrants[2].points[new_point_name] = quadrants[1].points[new_point_name]
                else:
                    quadrants[2].points[new_point_name] = self.occ.copy([(0, quadrants[1].points[new_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[2].points[new_point_name])], 1, 0, 0, 0)
            if symmetry in ['y', 'none']:
                if center[1] == 0.:
                    quadrants[4].points[new_point_name] = quadrants[1].points[new_point_name]
                else:
                    quadrants[4].points[new_point_name] = self.occ.copy([(0, quadrants[1].points[new_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[4].points[new_point_name])], 0, 1, 0, 0)
            if symmetry == 'none':
                if center[1] == 0.:
                    quadrants[3].points[new_point_name] = quadrants[2].points[new_point_name]
                else:
                    quadrants[3].points[new_point_name] = self.occ.copy([(0, quadrants[2].points[new_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[3].points[new_point_name])], 0, 1, 0, 0)

            for quadrant, qq in quadrants.items():
                qq.lines[line_name] = self.occ.addCircleArc(
                    qq.points[line.kp1], qq.points[line.kp3], qq.points[line.kp2], center=False)

        elif line.type == 'circle':
            center = [(pt1.x + pt2.x) / 2, (pt1.y + pt2.y) / 2]
            radius = (np.sqrt(np.square(pt1.x - center[0]) + np.square(pt1.y - center[1])) +
                      np.sqrt(np.square(pt2.x - center[0]) + np.square(pt2.y - center[1]))) / 2

            for quadrant, qq in quadrants.items():
                qq.lines[line_name] = self.occ.addCircle(
                    mirror_x[quadrant - 1] * center[0], mirror_y[quadrant - 1] * center[1], 0, radius)
                qq.points['kp' + line_name] = len(qq.points) + 1

        elif line.type == 'ellipticArc':
            a, b = line.arg1, line.arg2
            x1, y1 = pt1.x, pt1.y
            x2, y2 = pt2.x, pt2.y
            x3 = np.power(x1, 2.0)
            y3 = np.power(y1, 2.0)
            x4 = np.power(x2, 2.0)
            y4 = np.power(y2, 2.0)
            a2 = np.power(a, 2.0)
            b2 = np.power(b, 2.0)
            expression = -4.0 * a2 * b2 + a2 * y3 - 2.0 * a2 * y1 * y2 + a2 * y4 + b2 * x3 - 2.0 * b2 * x1 * x2 + b2 * x4
            xc = x1 / 2.0 + x2 / 2.0 - a * np.power(- expression / (a2 * y3 - 2.0 * a2 * y1 * y2 + a2 * y4 + b2 * x3 -
                                                                    2.0 * b2 * x1 * x2 + b2 * x4), 0.5) * (y1 - y2) / (2.0 * b)
            yc = y1 / 2.0 + y2 / 2.0 + b * np.power(- expression / (a2 * y3 - 2.0 * a2 * y1 * y2 + a2 * y4 + b2 * x3
                                                                    - 2.0 * b2 * x1 * x2 + b2 * x4), 0.5) * (x1 - x2) / (2.0 * a)

            center = self.occ.addPoint(xc, yc, 0, lc)
            axis_point_a = self.occ.addPoint(xc + a, yc, 0, lc)
            axis_point_b = self.occ.addPoint(xc, yc + b, 0, lc)

            new_point_name = 'kp' + line_name + '_center'
            new_axis_a_point_name = 'kp' + line_name + '_a'
            new_axis_b_point_name = 'kp' + line_name + '_b'

            quadrants[1].points[new_point_name] = center
            quadrants[1].points[new_axis_a_point_name] = axis_point_a
            quadrants[1].points[new_axis_b_point_name] = axis_point_b

            if symmetry in ['x', 'none']:
                if xc == 0.:  # Least amount of possible points.
                    quadrants[2].points[new_point_name] = quadrants[1].points[new_point_name]
                    quadrants[2].points[new_axis_a_point_name] = quadrants[1].points[new_axis_a_point_name]
                    quadrants[2].points[new_axis_b_point_name] = quadrants[1].points[new_axis_b_point_name]
                else:
                    quadrants[2].points[new_point_name] = self.occ.copy([(0, quadrants[1].points[new_point_name])])[0][1]
                    quadrants[2].points[new_axis_a_point_name] = self.occ.copy([(0, quadrants[1].points[new_axis_a_point_name])])[0][1]
                    quadrants[2].points[new_axis_b_point_name] = self.occ.copy([(0, quadrants[1].points[new_axis_b_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[2].points[new_point_name])], 1, 0, 0, 0)
                    self.occ.mirror([(0, quadrants[2].points[new_axis_a_point_name])], 1, 0, 0, 0)
                    self.occ.mirror([(0, quadrants[2].points[new_axis_b_point_name])], 1, 0, 0, 0)
            if symmetry in ['y', 'none']:
                if yc == 0.:
                    quadrants[4].points[new_point_name] = quadrants[1].points[new_point_name]
                    quadrants[4].points[new_axis_a_point_name] = quadrants[1].points[new_axis_a_point_name]
                    quadrants[4].points[new_axis_b_point_name] = quadrants[1].points[new_axis_b_point_name]
                else:
                    quadrants[4].points[new_point_name] = self.occ.copy([(0, quadrants[1].points[new_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[4].points[new_point_name])], 0, 1, 0, 0)
                    quadrants[4].points[new_axis_a_point_name] = self.occ.copy([(0, quadrants[1].points[new_axis_a_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[4].points[new_axis_a_point_name])], 0, 1, 0, 0)
                    quadrants[4].points[new_axis_b_point_name] = self.occ.copy([(0, quadrants[1].points[new_axis_b_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[4].points[new_axis_b_point_name])], 0, 1, 0, 0)
            if symmetry == 'none':
                if yc == 0.:
                    quadrants[3].points[new_point_name] = quadrants[2].points[new_point_name]
                    quadrants[3].points[new_axis_a_point_name] = quadrants[2].points[new_axis_a_point_name]
                    quadrants[3].points[new_axis_b_point_name] = quadrants[2].points[new_axis_b_point_name]
                else:
                    quadrants[3].points[new_point_name] = self.occ.copy([(0, quadrants[2].points[new_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[3].points[new_point_name])], 0, 1, 0, 0)
                    quadrants[3].points[new_axis_a_point_name] = self.occ.copy([(0, quadrants[2].points[new_axis_a_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[3].points[new_axis_a_point_name])], 0, 1, 0, 0)
                    quadrants[3].points[new_axis_b_point_name] = self.occ.copy([(0, quadrants[2].points[new_axis_b_point_name])])[0][1]
                    self.occ.mirror([(0, quadrants[3].points[new_axis_b_point_name])], 0, 1, 0, 0)

            for quadrant, qq in quadrants.items():
                qq.lines[line_name] = self.occ.addEllipseArc(
                    qq.points[line.kp1], qq.points[new_point_name], qq.points[new_axis_a_point_name if a > b else new_axis_b_point_name],
                    qq.points[line.kp2])

        else:
            raise ValueError('Hyper line {} not supported'.format(line.type))

    if symmetry != 'none':
        quadrants = self.md.geometries.iron_yoke.quadrants
        indexes = {'x_p': 1, 'y_p': 1, 'x_n': 1, 'y_n': 1}
        self.md.geometries.air_inf.points['center'] = self.occ.addPoint(0, 0, 0)
        for sym in list_bnds:
            if sym in ['x_p', 'y_p']:
                quadrant = 1
            elif sym == 'x_n':
                quadrant = 2
            else:  # 'y_n'
                quadrant = 4
            sym_lines_tags[sym] = [x for _, x in sorted(zip(symmetric_bnds_order[sym[0]], sym_lines_tags[sym]))]

            self.symmetric_bnds[sym]['pnts'].append(['center', 0])
            self.symmetric_bnds[sym]['pnts'].sort(key=lambda x: x[1])
            self.md.geometries.symmetric_boundaries.lines[sym + '_center'] = self.occ.addLine(
                self.md.geometries.air_inf.points['center'], quadrants[quadrant].points[self.symmetric_bnds[sym]['pnts'][1][0]])
            sym_lines_tags[sym].insert(0, self.md.geometries.symmetric_boundaries.lines[sym + '_center'])
            for i, pnt in enumerate(self.symmetric_bnds[sym]['pnts'][1:-1]):
                pnt_next = self.symmetric_bnds[sym]['pnts'][i + 2][0]
                if not any(pnt[0] in s and pnt_next in s for s in self.symmetric_bnds[sym]['line_pnts']):
                    self.md.geometries.symmetric_boundaries.lines[sym + '_' + pnt[0]] =\
                        self.occ.addLine(quadrants[quadrant].points[pnt[0]], quadrants[quadrant].points[pnt_next])
                    sym_lines_tags[sym].insert(indexes[sym], self.md.geometries.symmetric_boundaries.lines[sym + '_' + pnt[0]])
                indexes[sym] += 1
        if symmetry == 'xy':
            self.symmetric_loop_lines['x'] = sym_lines_tags['x_p']
            sym_lines_tags['y_p'].reverse()
            self.symmetric_loop_lines['y'] = sym_lines_tags['y_p']
        elif symmetry == 'x':
            sym_lines_tags['x_n'].reverse()
            self.symmetric_loop_lines['x'] = sym_lines_tags['x_n'] + sym_lines_tags['x_p']
        elif symmetry == 'y':
            sym_lines_tags['y_p'].reverse()
            self.symmetric_loop_lines['y'] = sym_lines_tags['y_p'] + sym_lines_tags['y_n']

    # add all areas of each quadrant. Useful for brep curves and meshing
    for key in geometry_setting.areas:  # only consider areas that are implemented
        quadrants = getattr(self.md.geometries, key).quadrants
        for quadrant, qq in quadrants.items():
            for area_name, area in iron.hyper_areas.items(): ## all areas
                def _add_loop():
                    # prevent additional curveloop generation when Enforcing the TSA mapping on the collar
                    if (run_type == 'TH'
                            and self.data.magnet.mesh.thermal.collar.Enforce_TSA_mapping
                            and (area_name.startswith('arc') and not area_name.startswith('arch') or area_name.startswith('arp'))
                    ): # need to disable the pole area too as it is linked to the same curve
                        qq.areas[area_name] = dM.Area() ## initialise area without loop
                    else:
                        qq.areas[area_name] = dM.Area(
                            loop=self.occ.addCurveLoop([qq.lines[line] for line in area.lines]))

                    if iron.hyper_areas[area_name].material not in getattr(self.md.domains.groups_entities, key) and \
                            iron.hyper_areas[area_name].material != 'BH_air': ## add the material to the keys
                        # for the collar region, it is possible to overwrite the material -> intercept it here
                        if key == 'collar' and (self.data.magnet.solve.collar.material != iron.hyper_areas[area_name].material) and self.data.magnet.solve.collar.material is not None:
                            logger.warning("Overwriting the collar material for area {} to {} ".format(area_name, self.data.magnet.solve.collar.material))
                            iron.hyper_areas[area_name].material = self.data.magnet.solve.collar.material
                        getattr(self.md.domains.groups_entities, key)[iron.hyper_areas[area_name].material] = []

                identifier = next((k for k in geom_dict.keys() if re.match(f'^{k}', area_name[2:])),
                                  None)  # match key from geom_dict to the area name (see naming convention)

                if key == self.inv_nc.get(identifier, None):  # re.sub(r'\d+', '', area_name[2:]),
                    _add_loop() # adds arch to collar, because c is in the naming convention of the collar
                elif area_name.startswith('arh') and key == 'iron_yoke': # if not previous but it is a hole, assume iron
                    _add_loop()

    # define inner collar lines
    def define_inner_collar():
        """
            Defines the inner collar line used for the thermal TSA + for the A projection
        """
        self.occ.synchronize()
        # only works if the inner collar line is an arc -> just disable 'arc' and calc for all lines
        # alternative method. Find all "arc" lines and then select the closest to the center
        for quad, object in self.md.geometries.collar.quadrants.items():
            arc_line_tags = [object.lines[name] for name in object.lines.keys() if
                          self.geom.iron.hyper_lines[name].type == 'arc']
            closest_dist = 1000.
            for tag in arc_line_tags:
                x, y, _ = gmsh.model.getValue(1, tag, [0.5]) # pick one point on the arc
                dist = np.sqrt(x ** 2 + y ** 2)
                if dist < closest_dist:
                    closest_dist = dist
                    closest_line = tag ## assumes it is only one line per quadrant
            self.md.geometries.collar.inner_boundary_tags[quad] = [closest_line]
    def define_collar_cooling():
        """
            Defines the cooling holes in the collar
        """
        self.occ.synchronize()
        line_names = [item for key in self.geom.iron.hyper_areas.keys() if 'ch' in key for item in self.geom.iron.hyper_areas[key].lines]
        # line names are the same in each quadrant. Tags are unique
        for quad, qq in self.md.geometries.collar.quadrants.items():
            self.md.geometries.collar.cooling_tags.extend([qq.lines[line] for line in line_names])
            # these tags are only used to be skipped for enfrocing_TSA_mapping

    # we need the inner collar lines if we want to do TSA, so no need to define it
    if run_type == 'TH' and self.data.magnet.geometry.thermal.use_TSA_new: define_inner_collar()
    # we only need to specify the air holes if we want cooling OR if we enforce TSA nodes on the collar
    if run_type == 'TH' and (self.data.magnet.solve.thermal.collar_cooling.enabled or self.data.magnet.mesh.thermal.collar.Enforce_TSA_mapping): define_collar_cooling()

constructWedgeGeometry(use_TSA)

Generates points, hyper lines, and curve loops for the wedges

Source code in fiqus/geom_generators/GeometryMultipole.py
def constructWedgeGeometry(self, use_TSA):
    """
        Generates points, hyper lines, and curve loops for the wedges
    """
    def _addMidLayerThinShellPoints(wedge_current):
        def __addThinShellPoints(side_case, mid_layer_ts):
            if side_case == 'outer':
                mean_rad_current = (Func.points_distance([wedge_current.oH.x, wedge_current.oH.y], wedge_center) +
                                    Func.points_distance([wedge_current.oL.x, wedge_current.oL.y], wedge_center)) / 2
            else:
                mean_rad_current = (Func.points_distance([wedge_current.iH.x, wedge_current.iH.y], wedge_center) +
                                    Func.points_distance([wedge_current.iL.x, wedge_current.iL.y], wedge_center)) / 2
            are_endpoints = {}
            for wnd_nr, wnd in pole.layers[wedge.order_l.layer + (1 if side_case == 'outer' else -1)].windings.items():
                blk_nr_next = list(wnd.blocks.keys())[blk_list_current.index(wedge.order_l.block)]
                blk_next = wnd.blocks[blk_nr_next]
                ht_list_next = (list(blk_next.half_turns.keys()) if blk_nr_next == list(wnd.blocks.keys())[0] else list(
                    reversed(blk_next.half_turns.keys())))
                hh = blk_next.half_turns[ht_list_next[-1]].corners.bare
                ll = blk_next.half_turns[ht_list_next[0]].corners.bare
                bc_next = Corner(oH=hh.oH, iH=hh.iH, oL=ll.oL, iL=ll.iL)
                if side_case == 'outer':
                    block_list = self.md.geometries.coil.anticlockwise_order.coils[wedge.order_l.coil].layers[wedge.order_l.layer + 1]
                    blk_index = [blk.block for blk in block_list].index(blk_nr_next)
                    if blk_index + 1 == len(block_list): blk_index = -1
                    for blk in block_list[blk_index + 1:] + block_list[:blk_index + 1]:
                        if blk.winding == block_list[blk_index].winding:
                            ht_index = -1
                            break
                        elif blk.pole != block_list[blk_index].pole:
                            ht_index = 0
                            break
                    hh = blk_next.half_turns[ht_list_next[ht_index]].corners.bare
                    ll = blk_next.half_turns[ht_list_next[0 if ht_index == -1 else -1]].corners.bare
                    mean_rad_next = (Func.points_distance([hh.iH.x, hh.iH.y], wedge_center) +
                                     Func.points_distance([ll.iL.x, ll.iL.y], wedge_center)) / 2
                else:
                    mean_rad_next = (Func.points_distance([bc_next.oH.x, bc_next.oH.y], wedge_center) +
                                     Func.points_distance([bc_next.oL.x, bc_next.oL.y], wedge_center)) / 2
                mean_rad = (mean_rad_current + mean_rad_next) / 2
                mid_layer = self.findMidLayerPoint(wedge_current.oH, bc_next.iH, wedge.corrected_center.outer, mean_rad)\
                    if side_case == 'outer' else self.findMidLayerPoint(wedge_current.iH, bc_next.oH, wedge.corrected_center.inner, mean_rad)
                are_endpoints[wnd_nr] = self.getMidLayerEndpoints(wedge_current, bc_next, wedge_center, mid_layer_arc_pnt=mid_layer)
            for wnd_nr, wnd in pole.layers[wedge.order_l.layer + (1 if side_case == 'outer' else -1)].windings.items():
                blk_nr_next = list(wnd.blocks.keys())[blk_list_current.index(wedge.order_l.block)]
                blk_next = wnd.blocks[blk_nr_next]
                is_first_blk_next = blk_nr_next == list(wnd.blocks.keys())[0]
                ht_list_next = (list(blk_next.half_turns.keys()) if is_first_blk_next else list(
                    reversed(blk_next.half_turns.keys())))
                if are_endpoints[wnd_nr]:  # this is empty if the wedge and the block are not radially adjacent
                    endpoints = are_endpoints[wnd_nr][0]
                    which_entity = are_endpoints[wnd_nr][1]
                    mid_layer_name = 'w' + str(wedge_nr) + '_' + str(blk_nr_next)
                    mid_layer_ts[mid_layer_name] = dM.Region()
                    ts_wdg = mid_layer_ts[mid_layer_name]
                    beg = ('w' + str(wedge_nr) if which_entity['lower'] == 'current' else str(ht_list_next[0])) + 'l'
                    ts_wdg.points[beg] = self.occ.addPoint(endpoints['lower'][0], endpoints['lower'][1], 0)
                    ht_lower_angles = {}
                    for ht_nr, ht in (blk_next.half_turns.items() if is_first_blk_next else reversed(blk_next.half_turns.items())):
                        for pnt1, pnt2, side in zip([[ht.corners.bare.iL.x, ht.corners.bare.iL.y], [ht.corners.bare.iH.x, ht.corners.bare.iH.y]],
                                                    [[ht.corners.bare.oL.x, ht.corners.bare.oL.y], [ht.corners.bare.oH.x, ht.corners.bare.oH.y]],
                                                    ['l', 'h']):
                            line_pars_current = Func.line_through_two_points(pnt1, pnt2)
                            intersect_prev = Func.intersection_between_arc_and_line(
                                line_pars_current, [wedge_center, endpoints['higher'], endpoints['lower']])
                            if intersect_prev:
                                ts_wdg.points[str(ht_nr) + side] = self.occ.addPoint(intersect_prev[0][0], intersect_prev[0][1], 0)
                            elif side == 'l':
                                intrsc = Func.intersection_between_circle_and_line(line_pars_current, [wedge_center, endpoints['lower']], get_only_closest=True)[0]
                                ht_lower_angles[ht_nr] = Func.arc_angle_between_point_and_abscissa([intrsc[0], intrsc[1]], wedge_center)
                    end = ('w' + str(wedge_nr) if which_entity['higher'] == 'current' else str(ht_list_next[-1])) + 'h'
                    if all('w' in pnt_name for pnt_name in list(ts_wdg.points.keys())):  # only one thin-shell 'within' the facing half-turn
                        wdg_angle_il = Func.arc_angle_between_point_and_abscissa([endpoints['lower'][0], endpoints['lower'][1]], wedge_center)
                        for ht_nr, ht in (blk_next.half_turns.items() if is_first_blk_next else reversed(blk_next.half_turns.items())):
                            if ht_lower_angles[ht_nr] > wdg_angle_il: break
                            prev_nr = str(ht_nr)
                        end = prev_nr + 'h'
                    ts_wdg.points[end] = self.occ.addPoint(endpoints['higher'][0], endpoints['higher'][1], 0)

                    # Create auxiliary thin shells for outliers
                    # if both corners belong to thin shells, continue
                    used_wdg_corners = [False, False]
                    for ep in are_endpoints.values():
                        if ep is not None:
                            if ep[1]['higher'] == 'current': used_wdg_corners[1] = True
                            if ep[1]['lower'] == 'current': used_wdg_corners[0] = True
                    if side_case == 'inner':
                        for ts_name in self.md.geometries.thin_shells.mid_layers_wdg_to_wdg.keys():
                            if ts_name[ts_name.index('_') + 1:] == 'w' + str(wedge_nr):
                                for ep_key, ep in are_endpoints_wdg[int(ts_name[1:ts_name.index('_')])].items():
                                    if ep is not None:
                                        if ep[1]['higher'] == 'next': used_wdg_corners[1] = True
                                        if ep[1]['lower'] == 'next': used_wdg_corners[0] = True
                    else:
                        if wedge_nr in are_endpoints_wdg:
                            for ep in are_endpoints_wdg[wedge_nr].values():
                                if ep is not None:
                                    if ep[1]['higher'] == 'current': used_wdg_corners[1] = True
                                    if ep[1]['lower'] == 'current': used_wdg_corners[0] = True
                    if not used_wdg_corners[1]:
                        for wdg_nr, wdg in self.geom.wedges.items():
                            if blk_nr_next == wdg.order_l.block: used_wdg_corners[1] = True
                    if not used_wdg_corners[0]:
                        for wdg_nr, wdg in self.geom.wedges.items():
                            if blk_nr_next == wdg.order_h.block: used_wdg_corners[0] = True
                    if not all(used_wdg_corners):
                        def ___create_aux_mid_layer_point(ss, points):
                            mid_layer_ts_aux[mid_layer_name] = dM.Region()
                            circle_pnt = [endpoints[ss][0], endpoints[ss][1]]
                            inter_pnt = Func.intersection_between_circle_and_line(Func.line_through_two_points(points[0], points[1]),
                                [[wedge.corrected_center.outer.x, wedge.corrected_center.outer.y], circle_pnt], get_only_closest=True)[0]
                            mid_layer_ts_aux[mid_layer_name].points[str(wedge_nr) + ss[0]] = self.occ.addPoint(inter_pnt[0], inter_pnt[1], 0)
                            mid_layer_ts_aux[mid_layer_name].points['center'] = self.occ.addPoint(wedge_data[wedge_nr][1].x, wedge_data[wedge_nr][1].y, 0)
                            mid_layer_ts_aux[mid_layer_name].lines['w' + str(wedge_nr)] = 0
                        if which_entity['higher'] == 'current' and which_entity['lower'] != 'current':
                            ___create_aux_mid_layer_point('lower', [[wedge_current.iL.x, wedge_current.iL.y],
                                                                    [wedge_current.oL.x, wedge_current.oL.y]])
                        elif which_entity['higher'] != 'current' and which_entity['lower'] == 'current':
                            ___create_aux_mid_layer_point('higher', [[wedge_current.iH.x, wedge_current.iH.y],
                                                                     [wedge_current.oH.x, wedge_current.oH.y]])
                        else:  # whole block 'within' the facing wedge
                            for wdg_nr, wdg in self.geom.wedges.items():
                                if blk_nr_next == wdg.order_h.block:
                                    ___create_aux_mid_layer_point('higher', [[wedge_current.iH.x, wedge_current.iH.y],
                                                                             [wedge_current.oH.x, wedge_current.oH.y]])
                                    break
                                elif blk_nr_next == wdg.order_l.block:
                                    ___create_aux_mid_layer_point('lower', [[wedge_current.iL.x, wedge_current.iL.y],
                                                                            [wedge_current.oL.x, wedge_current.oL.y]])
                                    break

        pole = self.geom.coil.coils[wedge.order_l.coil].poles[wedge.order_l.pole]
        blk_list_current = list(pole.layers[wedge.order_l.layer].windings[wedge.order_l.winding].blocks.keys())
        if wedge.order_l.layer < len(pole.layers):
            __addThinShellPoints('outer', self.md.geometries.thin_shells.mid_layers_wdg_to_ht)
        if wedge.order_l.layer > 1:
            __addThinShellPoints('inner', self.md.geometries.thin_shells.mid_layers_ht_to_wdg)

    wedges = self.md.geometries.wedges
    mid_layer_ts_aux = self.md.geometries.thin_shells.mid_layers_aux
    wedge_data = {}

    wdgs_corners = {}
    for wedge_nr, wedge in self.geom.wedges.items():
        wdgs_corners[wedge_nr] = {}
        corners = wdgs_corners[wedge_nr]
        if wedge.order_l.coil not in wedges.coils:
            wedges.coils[wedge.order_l.coil] = dM.WedgeLayer()
        if wedge.order_l.layer not in wedges.coils[wedge.order_l.coil].layers:
            wedges.coils[wedge.order_l.coil].layers[wedge.order_l.layer] = dM.WedgeRegion()
        wedge_layer = wedges.coils[wedge.order_l.coil].layers[wedge.order_l.layer]
        wedge_layer.wedges[wedge_nr] = dM.Region()
        wedge_reg = wedge_layer.wedges[wedge_nr]
        wedge_layer.block_prev[wedge_nr] = wedge.order_l.block
        wedge_layer.block_next[wedge_nr] = wedge.order_h.block
        wnd = self.geom.coil.coils[wedge.order_l.coil].poles[wedge.order_l.pole].layers[
            wedge.order_l.layer].windings[wedge.order_l.winding]
        wnd_next = self.geom.coil.coils[wedge.order_h.coil].poles[wedge.order_h.pole].layers[
            wedge.order_h.layer].windings[wedge.order_h.winding]
        block = wnd.blocks[wedge.order_l.block]
        block_next = wnd_next.blocks[wedge.order_h.block]
        corners['last_ht'] = int(list(self.md.geometries.coil.coils[wedge.order_l.coil].poles[wedge.order_l.pole].layers[
                                          wedge.order_l.layer].windings[wedge.order_l.winding].blocks[wedge.order_l.block].half_turns.areas.keys())[-1])
        corners['first_ht'] = int(list(self.md.geometries.coil.coils[wedge.order_h.coil].poles[wedge.order_h.pole].layers[
                                           wedge.order_h.layer].windings[wedge.order_h.winding].blocks[wedge.order_h.block].half_turns.areas.keys())[0])
        ht_current = block.half_turns[corners['last_ht']].corners.bare
        ht_next = block_next.half_turns[corners['first_ht']].corners.bare
        d_current = self.data.conductors[wnd.conductor_name].cable.th_insulation_along_width * 2
        d_next = self.data.conductors[wnd_next.conductor_name].cable.th_insulation_along_width * 2
        for pnt_close, pnt_far, wdg_corner, d in zip([ht_current.iH, ht_current.oH, ht_next.iL, ht_next.oL],
                                                     [ht_current.iL, ht_current.oL, ht_next.iH, ht_next.oH],
                                                     ['il', 'ol', 'ih', 'oh'], [d_current, d_current, d_next, d_next]):
            if abs(pnt_far.x - pnt_close.x) > 0.:
                m = (pnt_far.y - pnt_close.y) / (pnt_far.x - pnt_close.x)
                b = pnt_close.y - m * pnt_close.x
                root = np.sqrt(- pnt_close.x ** 2 * m ** 2 - 2 * pnt_close.x * b * m + 2 * pnt_close.x * pnt_close.y * m
                               - b ** 2 + 2 * b * pnt_close.y - pnt_close.y ** 2 + d ** 2 * m ** 2 + d ** 2)
                pnt1_x = (pnt_close.x - b * m + pnt_close.y * m + root) / (m ** 2 + 1)
                pnt1_y = m * pnt1_x + b
                pnt2_x = (pnt_close.x - b * m + pnt_close.y * m - root) / (m ** 2 + 1)
                pnt2_y = m * pnt2_x + b
                corners[wdg_corner] = Coord(x=pnt1_x, y=pnt1_y) if Func.points_distance([pnt1_x, pnt1_y], [pnt_far.x, pnt_far.y]) >\
                    Func.points_distance([pnt_close.x, pnt_close.y], [pnt_far.x, pnt_far.y]) else Coord(x=pnt2_x, y=pnt2_y)
            else:
                bore_cnt_x = self.geom.coil.coils[wedge.order_l.coil].bore_center.x
                pnt1_y, pnt2_y = pnt_close.y + d, pnt_close.y - d
                corners[wdg_corner] = Coord(x=pnt_close.x,
                                            y=pnt1_y if (wdg_corner[-1] == 'l' and pnt_close.x > bore_cnt_x) or
                                                        (wdg_corner[-1] == 'h' and pnt_close.x < bore_cnt_x) else pnt2_y)
            wedge_reg.points[wdg_corner] = self.occ.addPoint(corners[wdg_corner].x, corners[wdg_corner].y, 0)
        inner = Func.corrected_arc_center([self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.x,
                                           self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.y],
                                          [corners['ih'].x, corners['ih'].y], [corners['il'].x, corners['il'].y])
        outer = Func.corrected_arc_center([self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.x,
                                           self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.y],
                                          [corners['oh'].x, corners['oh'].y], [corners['ol'].x, corners['ol'].y])
        wedge_data[wedge_nr] = [Corner(iH=corners['ih'], oH=corners['oh'], iL=corners['il'], oL=corners['ol']), wedge.corrected_center.outer]
        wedge_reg.points['inner_center'] = self.occ.addPoint(inner[0], inner[1], 0)
        wedge_reg.points['outer_center'] = self.occ.addPoint(outer[0], outer[1], 0)
        wedge_reg.lines['h'] = self.occ.addLine(wedge_reg.points['ih'], wedge_reg.points['oh'])
        wedge_reg.lines['l'] = self.occ.addLine(wedge_reg.points['il'], wedge_reg.points['ol'])
        wedge_reg.lines['i'] = self.occ.addCircleArc(wedge_reg.points['ih'], wedge_reg.points['inner_center'], wedge_reg.points['il'])
        wedge_reg.lines['o'] = self.occ.addCircleArc(wedge_reg.points['oh'], wedge_reg.points['outer_center'], wedge_reg.points['ol'])
        """
        logger.warning("Using straight wedge geometry") # required for the projection
        wedge_reg.lines['i'] = self.occ.addLine(wedge_reg.points['ih'], wedge_reg.points['il'])
        wedge_reg.lines['o'] = self.occ.addLine(wedge_reg.points['oh'], wedge_reg.points['ol'])
        """
        wedge_reg.areas[str(wedge_nr)] = dM.Area(loop=self.occ.addCurveLoop(
            [wedge_reg.lines['i'], wedge_reg.lines['l'], wedge_reg.lines['o'], wedge_reg.lines['h']]))

    if use_TSA:
        # Wedge thin shells
        mid_layer_ts = self.md.geometries.thin_shells.mid_layers_wdg_to_wdg
        are_endpoints_wdg = {}
        for coil_nr, coil in self.md.geometries.wedges.coils.items():
            layer_list = list(coil.layers.keys())
            for layer_nr, layer in coil.layers.items():
                if layer_list.index(layer_nr) + 1 < len(layer_list):
                    for wedge_nr, wedge in layer.wedges.items():
                        are_endpoints_wdg[wedge_nr] = {}
                        are_endpoints = are_endpoints_wdg[wedge_nr]
                        wedge_current = wedge_data[wedge_nr][0]
                        wedge_center = [wedge_data[wedge_nr][1].x, wedge_data[wedge_nr][1].y]
                        mean_rad_current = (Func.points_distance([wedge_current.oH.x, wedge_current.oH.y], wedge_center) +
                                            Func.points_distance([wedge_current.oL.x, wedge_current.oL.y], wedge_center)) / 2
                        for wdg_next_nr, wdg_next in coil.layers[layer_nr + 1].wedges.items():
                            if self.geom.wedges[wedge_nr].order_l.pole == self.geom.wedges[wdg_next_nr].order_l.pole:
                                wedge_next = wedge_data[wdg_next_nr][0]
                                mean_rad_next = (Func.points_distance([wedge_next.iH.x, wedge_next.iH.y], wedge_center) +
                                                 Func.points_distance([wedge_next.iL.x, wedge_next.iL.y], wedge_center)) / 2
                                mean_rad = (mean_rad_current + mean_rad_next) / 2
                                mid_layer = self.findMidLayerPoint(wedge_current.oH, wedge_next.iH, wedge_data[wedge_nr][1], mean_rad)
                                are_endpoints[wdg_next_nr] = self.getMidLayerEndpoints(wedge_current, wedge_next, wedge_center, mid_layer_arc_pnt=mid_layer)
                                if are_endpoints[wdg_next_nr]:  # this is empty if the wedges are not radially adjacent
                                    endpoints = are_endpoints[wdg_next_nr][0]
                                    mid_layer_name = 'w' + str(wedge_nr) + '_w' + str(wdg_next_nr)
                                    mid_layer_ts[mid_layer_name] = dM.Region()
                                    ts = mid_layer_ts[mid_layer_name]
                                    ts.points['center'] = self.occ.addPoint(wedge_center[0], wedge_center[1], 0)
                                    ts.points['beg'] = self.occ.addPoint(endpoints['lower'][0], endpoints['lower'][1], 0)
                                    end = 'w' + str(wedge_nr if are_endpoints[wdg_next_nr][1] == 'current' else wdg_next_nr)
                                    ts.points[end] = self.occ.addPoint(endpoints['higher'][0], endpoints['higher'][1], 0)

        # Half-turn thin shells
        for wedge_nr, wedge in self.geom.wedges.items():
            corners = wdgs_corners[wedge_nr]
            # Mid layer lines
            wedge_center = [self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.x,
                            self.md.geometries.coil.coils[wedge.order_l.coil].bore_center.y]
            _addMidLayerThinShellPoints(Corner(iH=corners['ih'], oH=corners['oh'], iL=corners['il'], oL=corners['ol']))
            # Mid wedge-turn lines
            mid_turn_ts = self.md.geometries.thin_shells.mid_wedge_turn
            for adj_blk, ht, inner, outer in zip([wedge.order_l, wedge.order_h], [corners['last_ht'], corners['first_ht']],
                                                 [corners['il'], corners['ih']], [corners['ol'], corners['oh']]):
                mid_turn_ts['w' + str(wedge_nr) + '_' + str(adj_blk.block)] = dM.Region()
                ts = mid_turn_ts['w' + str(wedge_nr) + '_' + str(adj_blk.block)]
                ht_corners = self.geom.coil.coils[adj_blk.coil].poles[adj_blk.pole].layers[
                    adj_blk.layer].windings[adj_blk.winding].blocks[adj_blk.block].half_turns[ht].corners.bare
                ht_corners_i = ht_corners.iH if ht == corners['last_ht'] else ht_corners.iL
                ht_corners_o = ht_corners.oH if ht == corners['last_ht'] else ht_corners.oL
                mid_inner = [(inner.x + ht_corners_i.x) / 2, (inner.y + ht_corners_i.y) / 2]
                mid_outer = [(outer.x + ht_corners_o.x) / 2, (outer.y + ht_corners_o.y) / 2]
                line_name = 'w' + str(wedge_nr) + '_' + str(ht)
                ts.points[line_name + '_i'] = self.occ.addPoint(mid_inner[0], mid_inner[1], 0)
                ts.points[line_name + '_o'] = self.occ.addPoint(mid_outer[0], mid_outer[1], 0)

fragment()

Fragment and group air domains

Source code in fiqus/geom_generators/GeometryMultipole.py
def fragment(self):
    """
        Fragment and group air domains
    """
    # Collect surfaces to be subtracted by background air
    holes = []

    # iron yoke and collar
    group_keys = self.nc.keys()

    for key in group_keys:
        group = getattr(self.md.domains.groups_entities, key)
        for _, surfaces in group.items():
            holes.extend([(2, s) for s in surfaces])

    # Coils
    for coil_nr, coil in self.md.geometries.coil.coils.items():
        for pole_nr, pole in coil.poles.items():
            for layer_nr, layer in pole.layers.items():
                for winding_nr, winding in layer.windings.items():
                    for block_key, block in winding.blocks.items():
                        for area_name, area in block.half_turns.areas.items():
                            holes.append((2, area.surface))
    # Wedges
    for coil_nr, coil in self.md.geometries.wedges.coils.items():
        for layer_nr, layer in coil.layers.items():
            for wedge_nr, wedge in layer.wedges.items():
                for area_name, area in wedge.areas.items():
                    holes.append((2, area.surface))
    # Insulation
    # if run_type == 'TH' and not self.data.magnet.geometry.thermal.use_TSA:
    #     for coil_nr, coil in self.md.geometries.insulation.coils.items():
    #         for group_nr, group in coil.group.items():
    #             for area_name, area in group.ins.areas.items():
    #                 holes.append((2, area.surface))

    # Fragment
    fragmented = self.occ.fragment([(2, self.md.geometries.air_inf.areas['inner'].surface)], holes)[1]
    self.occ.synchronize()

    self.md.domains.groups_entities.air = []
    existing_domains = [e[0][1] for e in fragmented[1:]]
    for e in fragmented[0]:
        if e[1] not in existing_domains:
            self.md.domains.groups_entities.air.append(e[1])